Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Comparative Analysis of Direct Injection into a Pressurized Chamber Using an Automatic Image Treatment Methodology

2016-10-25
2016-36-0163
A multi-hole direct injection injector was studied by means of image analysis. Methodologies based on an automatic process of cone angle measurement and edge detection were applied for the spray images generated by a 100 bar injection pressure discharged into a pressurized rigid chamber. A criterion based on pixel values was taken to localize the spray edges as angular coordinates and also with x and y position data. The high pixel values were associated with liquid phase while the low pixel values were associated to its absence. Computational codes written in MATLAB environment were used to analyze the numerical matrices associated to the images. Using the written MATLAB codes, a comparison of the effect of atmospheric back pressure, inside the chamber, on the spray pattern, cone angle and spray penetration were evaluated. The chamber was pressurized with 2.5, 5.0, 7.5 and 10 bar of back pressure. The tested fluid injected was EXXSOL D60 for simulating ethanol fuel behavior.
Technical Paper

Stratified Torch Ignition Engine: NOx Emissions

2016-10-25
2016-36-0387
The emission of nitric oxide (NOx) is the most difficult to limit among numerous harmful exhaust gas components. The NOX emission of internal combustion engines is mainly NO, but it will be oxidized into NO2 quickly after entering the air. NO is formed inside the combustion chamber in post-flame combustion by the oxidation of nitrogen from the air in conditions that are dependent on the chemical composition of the mixture, temperature and pressure. The correlation between NO emissions and temperature in the combustion chamber is a result of the endothermic nature of these reactions and can be described by extended Zeldovich Mechanism. The stratified torch ignition engine is able to run with lean mixture and low cyclic variability. Due to lean operation, the in-cylinder temperature of the STI engine is significantly lower than the conventional spark ignited one. This fact lead to a substantial reduction in NOx specific emission.
Technical Paper

Stratified Torch Ignition Engine: Raw Emissions

2016-10-25
2016-36-0477
A global effort has been made by the scientific community to promote significant reduction in vehicle engine out-emission. To comply with this goal a stratified torch ignition (STI) engine is built from a commercial existing baseline engine. In this system, combustion starts in a pre-combustion chamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy, being able to generate a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. The engine out-emissions of CO, HC and CO2 of the STI engine are presented, analyzed and compared with the baseline engine. The STI engine showed a significant decrease in the specific emissions of CO and CO2.
X