Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Electrooxidation of Organics in Waste Water

1990-07-01
901312
Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA Johnson Space Center is currently being pursued at Texas A&M University to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of a novel electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel cell technology is presented.
Technical Paper

Post-Treatment of Reclaimed Waste Water Based on an Electrochemical Advanced Oxidation Process

1992-07-01
921275
The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. Lynntech, Inc., working with NASA-JSC, is developing an electrochemical UV reactor which generates oxidants, operates at low temperatures and requires no chemical expendables. The reactor is the basis for an advanced oxidation process, in which electrochemically generated ozone and hydrogen peroxide are used, in combination with ultraviolet light irradiation, to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency and process reaction kinetics are discussed. At the completion of this development effort, the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.
X