Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of an Offline Simulation Tool to Test the On-Board Diagnostic Software for Diesel After-Treatment Systems

2007-04-16
2007-01-1133
An innovative approach for the simulation of the interaction between the software to be implemented in the Electronic Control Unit (ECU) of the vehicle and the engine is described. The aim was to perform a complete simulation of the engine coupled with the ECU, in order to support multi-disciplinary development and to enable engineers to verify and validate control models in early development stages, reducing costs by performing fewer live engine tests. Also, the simultaneous simulation of the models allows to study their interaction, thus allowing an early exploration of the possible design choices over multiple disciplines. A first prototype of the coupling has been implemented, with an emphasis on realizing a common notion of time and a proper treatment of data exchange between the control model and the engine model.
Technical Paper

1D Modeling of the Hydrodynamics and of the Regeneration Mechanism in Continuous Regenerating Traps

2006-09-14
2006-01-3011
The present work focuses on the simulation of the hydrodynamics, transient filtration/loading and catalytic/NO2-assisted regeneration of Diesel after-treatment systems. A 1D unsteady model for compressible and reacting flows for the numerical simulation of the behavior of Diesel Oxidation Catalysts (DOCs) and Diesel Particulate Filters (DPFs) has been developed. The numerical model is able to keep track of the amount of soot in the flow; the increasing of back-pressure through the exhaust system (mainly due to the Diesel Particulate Filter) can be predicted by the calculation of the permeability variation of the porous wall, as the soot particles goes inside the DPF. A sub-model for the regeneration of the collected soot has been developed: the collected particulate is oxidized by the Oxygen (O2) and by the Nitrogen Dioxide (NO2).
Technical Paper

A 1D Unsteady Thermo-Fluid Dynamic Approach for the Simulation of the Hydrodynamics of Diesel Particulate Filters

2006-04-03
2006-01-0262
A new approach for the fluid-dynamic simulation of the Diesel Particulate Filters (DPF) has been developed. A mathematical model has been formulated as a system of nonlinear partial differential equations describing the conservation of mass, momentum and energy for unsteady, compressible and reacting flows, in order to predict the hydrodynamic characteristics of the DPF and to study the soot deposition mechanism. In particular, the mass conservation equations have been solved for each chemical component considered, and the advection of information concerning the chemical composition of the gas has been figured out for each computational mesh. A sub-model for the prediction of the soot cake formation has been developed and predictions of soot deposition profiles have been calculated for different loading conditions. The results of the simulations, namely the calculated pressure drop, have been compared with the experimental data.
X