Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Influence of the Intake System Design on a Small Spark-Ignition Engine Performance A Theoretical Analysis

2003-10-27
2003-01-3134
In a previous paper, the authors assessed the potential of CFD modeling in developing a new intake system for a small spark-ignition engine. The effect of the intake port and valve design on the charge motion within the cylinder was illustrated [1]. In this paper, a detailed analysis of the influence of the intake port geometry on the combustion process, therefore on the performance, of a MPI spark-ignition engine has been carried out. The purpose of such a theoretical analysis is to provide some guidelines, in developing new intake solutions, aimed to improve the combustion quality of a production engine on the market since the early 80's. A 3-D computer code has been used to model the intake, compression and combustion processes of the engine. The model has been validated comparing the computational results to the data, relative to the normal production engine, provided by the manufacturer.
Technical Paper

Numerical and Experimental Analysis of Different Combustion Chambers for a Small Spark-Ignition Engine

2004-06-08
2004-01-1998
A small spark-ignition engine, in wide spread commercial usage since numerous years, is at present under study with the aim of improving its performance, in terms of a reduction of both fuel consumption and pollutant emissions. In previous papers, the influence of piston geometry [1] and intake system [2] on the combustion process has been evaluated by means of a 3-D computational model. In this paper, a more extensive analysis of the parameters affecting the combustion rate, hence thermal efficiency, pollutant formation and engine stability, has been carried out. In particular, at ELASIS Research Center, three prototypes featuring different combustion chambers have been realized and analyzed to the aim of assessing the influence of the squish area percentage on the flame front propagating in a quiescent charge. Furthermore, the AVL FIRE computer code has been utilized in order to simulate the engine behavior at full load operation.
Technical Paper

Modeling of a Four-Valve S.I. Engine Combustion: A Comparison of Two 3-D Computer Codes

2001-10-01
2001-01-3235
In previous papers [1, 2], the authors proposed a hybrid combustion model able to predict the behavior of a small spark-ignition, multivalve, multipoint injection engine, at different operating points. The combustion model proposed was implemented in the KIVA-3V [3] code for a closed valve simulation of engine operation. The results obtained for pressure cycles showed good agreement to the measured data and the characteristic constant of the model resulted less sensitive to the engine operating conditions such as rotational speed. Since the present research activity is aimed to investigate the potential for the adoption of alternate fuels, the latter point was considered of interest in modeling such off-design operation as a change in engine fueling. In this paper, the simulation results obtained by using the KIVA-3V code are compared to those provided by a different multidimensional code: AVL FIRE 72b [4].
Technical Paper

Experimental And Numerical Analysis Of A Small VVT S.I. Engine

2005-09-11
2005-24-079
Optimized valve timing, according to engine load, may lead to significant improvements in pumping losses and internal EGR generation. Thus, VVT technology constitutes an effective way to reduce both fuel consumption and pollutant emissions. In this paper, the behavior of a small displacement, 2 valve, Spark-ignition engine, with variable valve timing, has been numerically and experimentally analyzed. The use of VVT allows obtaining combined internal EGR and Reverse Miller Cycle effects so to achieve a significant dethrottling at part load operation. High EGR rates require high turbulence intensity in order to accelerate the combustion rate. The engine performs an accurate combustion chamber design and a tangential intake port able to generate optimized swirl motion, according to the engine speed and load, during both the exhaust gas re-aspiration and the intake stroke. Engine performances at different cam phaser positions have been calculated by means of a 3-D computer code.
X