Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

3D-1D Analyses of the Turbulent Flow Field, Burning Speed and Knock Occurrence in a Turbocharged SI Engine

2007-09-16
2007-24-0029
CFD techniques are more and more utilized in the development of new solutions for performance improvement of internal combustion engines. Three dimensional models, in general, are able to provide detailed and sound information on engine phenomena, but often they are time consuming and hard to be implemented. On the other hand, one-dimensional models can reproduce the entire engine cycle with acceptable computational times; however they need semi-empirical correlations in order to model the flow field details and the burning speed within each cylinder. In this paper, an example of hierarchical structure of 3-D and 1-D models has been proposed. The main performances of a small turbocharged spark-ignition engine have been calculated. Variable-speed and full load operating points have been analyzed. The 3-D model provided the details of the in-cylinder flow field and turbulent indices.
Technical Paper

Numerical and Experimental Analysis of Different Combustion Chambers for a Small Spark-Ignition Engine

2004-06-08
2004-01-1998
A small spark-ignition engine, in wide spread commercial usage since numerous years, is at present under study with the aim of improving its performance, in terms of a reduction of both fuel consumption and pollutant emissions. In previous papers, the influence of piston geometry [1] and intake system [2] on the combustion process has been evaluated by means of a 3-D computational model. In this paper, a more extensive analysis of the parameters affecting the combustion rate, hence thermal efficiency, pollutant formation and engine stability, has been carried out. In particular, at ELASIS Research Center, three prototypes featuring different combustion chambers have been realized and analyzed to the aim of assessing the influence of the squish area percentage on the flame front propagating in a quiescent charge. Furthermore, the AVL FIRE computer code has been utilized in order to simulate the engine behavior at full load operation.
Technical Paper

Development of a New Intake System for a Small Spark-Ignition Engine. Modeling the Flow Through the Inlet Valve

2003-03-03
2003-01-0369
The intake system of a wide commercial spread spark-ignition engine has been modeled by using a 3-D code. The present configuration of the inlet manifold and inlet port does not generate any organized charge rotation, especially at low rotational speed. Objective of this paper is the research of new solutions, able to produce higher turbulence levels of the in-cylinder flow, without lowering the engine volumetric efficiency, in order to shorten the combustion duration and improve the energy conversion quality. A three-dimensional model for the calculation of the inlet port and valve performance under steady conditions has been developed. First, the normal production intake system has been modeled to the aim of validating the model set-up. The inlet valve discharge coefficient in a steady flow has been calculated. The results obtained showed a good agreement to the measured data and encouraged the authors to use the model for the development of new intake solutions.
X