Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Computer Simulation of the Performance of a 1.9 Litre Direct Injection Diesel Engine

2002-03-04
2002-01-0070
Recent environmental legislation to reduce emissions and improve efficiency means that there is a real need for improved thermodynamic performance models for the simulation of direct-injection, turbocharged diesel engines, which are becoming increasingly popular in the automotive sector. An accurate engine performance simulation software package (VIRTUAL 4-STROKE) is employed to model a benchmark automotive 1.9-litre Turbocharged Direct Injection (TDI) diesel engine. The accuracy of this model is scrutinised against actual test results from the engine. This validation includes comparisons of engine performance characteristics and also instantaneous gas dynamic and thermodynamic behaviour in the engine cylinders, turbocharger and ducting. It is seen that there is excellent agreement in all of these areas.
Technical Paper

Non-Isentropic Analysis of Varying Area Flow in Engine Ducting

1993-09-01
932399
In two previous papers to this Society (1, 2)* an ‘alternative’ method was presented for the prediction of the unsteady gas flow behaviour through a reciprocating internal combustion engine. The computational procedures led further to the prediction of the overall performance characteristics of the power unit, be it operating on a two- or a four-stroke cycle. Correlation with measurements was given to illustrate its effectiveness and accuracy. In the ducts of such engines there are inevitably sectional changes of area which are either gradual or sudden. A tapered pipe is typical of a gradual area change whereas a throttle or a turbocharger nozzle represents a sudden area change. In those previous papers it was indicated that a fuller explanation, of the theoretical procedures required to predict accurately the unsteady gas flow in such duct sections would be given in a later paper to this Society; this is that necessary publication.
Technical Paper

The Development of a High Speed Dynamometer and Preliminary Results Obtained from a C.A.V.01 Turbine

1969-02-01
690757
Modern turbocharged diesel engines employ exhaust driven turboblowers operating at high speeds up to 100,000 rpm. The performance assessment of such units demands precise and controllable power absorption and torque measurements at these very high rotational speeds. Additionally the parameters, speed, mass flow, static and dynamic pressures and temperatures must be measured. The turbine power absorption and torque measutement present unique problems. The remaining parameters may present some difficulties but generally the problems are not so great. The design of a high speed dynamometer and the development problems encountered are described. The dynamometer has been used to establihs the performance characteristics of a C. A. V. 01 turbocharger and these are reported.
X