Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Estimation of the Effects of Vehicle Size and Mass on Crash-Injury Outcome through Parameterized Probability Manifolds

2003-03-03
2003-01-0905
One way to improve vehicle's fuel economy is to reduce its weight. Reducing weight, however has other consequences. One of these is reduced vehicle size. Almost invariably, lighter vehicles are smaller. Reducing vehicle weight has also been associated with a reduction in occupant protection; the lighter the vehicle, the greater the chance of injury when a crash occurs. For this study, a data-based model is used to evaluate the independent effects of size and weight. This model is constructed using the NASS database and information obtained from NCAP tests. The results indicate that although mass is the dominant factor, size also has an effect; some of the observed reduction in safety benefits associated with mass reduction is actually an effect of size reduction. The model is also used to evaluate the effects of varying stiffness.
Technical Paper

Development of a Rubber-Like Headform Skin Model for Predicting the Head Injury Criterion (HIC)

1995-02-01
950883
This paper describes the development of a rubber-like skin Finite Elements Model (FEM) for the Hybrid III headform and an experimental method to determine its material properties. The finite element modeling procedures, using material parameters derived from tests conducted on the headform skin (rubber) material, are described. Dynamic responses and computations of HIC using the developed headform model show that an Elastic-Plastic Hydrodynamic (EPH) material model of the rubber can be used for headform impact simulations. The results obtained from the headform simulation using an EPH rubber material model and drop tower tests of the headform on both a rigid and a deformable structure will be compared, in order to show the applicability of the EPH model.
Technical Paper

Flow and Energy Pattern in Pyrotechnic Airbag Inflator-Canister System

1997-02-24
970388
The highly dynamic process in a pyrotechnic inflator and in a canister-airbag system was simulated by using two compressible gas thermal energy numerical models. First a 2-D model was used to simulate flow through the inflator porous media; then results from the first model were used as input to a second 2-D model to compute pressure, temperature and flow patterns in the airbag. Results show a complete picture of the dynamics of the airbag inflator - canister system during deployment.
Technical Paper

Thoraco-Abdominal Response and Injury

1980-09-01
801305
This study Investigates the response of human cadavers1, and live anesthetized and post-mortem primates and canines2, to blunt lateral thoraco-abdominal impact. There were 12 primates: 5 post-mortem and 7 live anesthetized; 10 canines; 1 post-mortem and 9 live anesthetized; and 3 human cadavers. A 10 kg free-flying mass was used to administer the impact in the right to left direction. To produce the varying degrees of injury, factors including velocity, padding of the impactor surface, location of impact site, and impactor excursion were adjusted. The injuries were evaluated by gross autopsy, and in the case of live subjects, current clinical methods such as sequential peritoneal lavage and biochemical assays were also employed. Mechanical measurements included force time history, intraortic pressure, and high-speed cineradiography to define gross organ motion.
Technical Paper

Head Impact Response

1977-02-01
770921
A series of head impacts were conducted with 15 unembalmed cadavers. The purpose of the tests was to study the application of three-dimensional motion analysis using accelerometry, brain vascular system pressurization and high speed cineradiography to the understanding of head injury mechanics. The implementation of the techniques is described and their effectiveness is discussed. The three-dimensional accelerometry technique using nine accelerometers was found to be applicable in direct head impacts. Analysis of the head acceleration data indicates the existence of brain motions which are independent of the motion of the skull. These motions were confirmed by the high speed cineradiographic films. Brain vascular system pressurization and time after death were found to play a role in determining the extent of the brain motions and the resulting brain injuries.
Technical Paper

Optimization of Single-Point Frontal Airbag Fire Threshold

2000-03-06
2000-01-1009
The relationship of the airbag fire-distribution as a function of impact velocity to the airbag fire-time is studied through the use of an optimization procedure. The study is conducted by abstracting the sensor algorithm and its associated constraints into a simple mathematical formulation. An airbag fire objective function is constructed that integrates the fire-rate and fire-time requirements. The function requires the input of a single acceleration time history; it produces an output depending on the airbag fire condition. Numerical search of the optimal fire threshold curve is achieved through parameterizing this curve and applying a modified simplex search optimization algorithm that determines the optimal threshold function parameters without computing the complete objective function in the parameter space. Numerical results are given to show the effectiveness and potential difficulties with the automatic search scheme.
Technical Paper

Information Flow Analysis for Air Bag Sensor Development

2000-03-06
2000-01-1388
A statistical theory is used to quantify the amount of information transmitted from a transducer (i.e., accelerometer) to the air bag controller during a vehicle crash. The amount of information relevant to the assessment of the crash severity is evaluated. This quantification procedure helps determine the effectiveness of different testing conditions for the calibration of sensor algorithms. The amount of information in an acceleration signal is interpreted as a measure of the ability to separate signals based on parameters that are used to assess the severity of an impact. Applications to a linear spring-mass model and to actual crash signals from a development vehicle are presented. In particular, the comparison of rigid barrier (RB) and offset deformable barrier (ODB) testing modes is analyzed. Also, the performance of front-mounted and passenger compartment accelerometers are compared.
Technical Paper

Energy and Entropy in Airbag Deployment: The Effect on an Out-Of-Position Occupant

1999-03-01
1999-01-1071
Deployment of an airbag or charging of a tank by an inflator-canister system is a highly dynamic process. Quantification of energy storage, energy flux, work done, flow rates, thermodynamic properties, and energy conservation are essential to describe the deployment process. The concepts of available work and entropy production are presented as useful parameters when evaluating airbag aggressivity from tank test results for different types of inflators. This paper presents a computational methodology to simulate a pyro- and a hybrid-inflator-canister-airbag system to predict the force pattern that could occur on an out-of-position occupant when the airbag deploys. Comparisons with experimental data have been made in all cases where data were available. These include driver-, passenger-, and side-airbag designs.
Technical Paper

An Evaluation of Airbag Tank-Test Results

1998-02-23
980864
The evaluation of the performance of a particular inflator for the design of the entire airbag system is typically carried out by examining the pressure pattern in a standard tank test. This study assesses the adequacy of the tank test as a true measure of the likely performance of the actual inflator-airbag system. Theoretical arguments, numerical experiments, and physical experiments show that the time rate of pressure change may be an appropriate measure to evaluate performance of a specific type of inflator, particularly if variations in the inflator design maintain the same working gas components. However, when evaluating and comparing the dynamic behavior between different types of inflators, the time rate of pressure change provides useful but incomplete information.
X