Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Porous Plant Growth Media Design Considerations for Lunar and Martian Habitats

2009-07-12
2009-01-2361
Lunar-and Martian-based plant growth facilities pose novel challenges to design and management of porous medium-based root-zone environments. For example, to achieve similar equilibrium water content distribution using potting soil, a 10 cm tall root zone on earth needs to be 60 cm tall on the moon. We used analytical models to parameterize porous plant growth media for reduced gravity conditions. This approach is straight-forward because the equilibrium capillary potential scales linearly with gravity force. However, the highly non-linear water retention character is tied to particle size through the resulting pore-size distribution. Therefore interpreting the corresponding particle size and generating and evaluating the porous medium hydraulic properties remains a challenge. Soil physical principles can be applied to address the ultimate concern of controlling fluids (O2, H2O) within the plant root-zone in reduced gravity.
Technical Paper

An Automated Oxygen Diffusion Measurement System for Porous Media in Microgravity

2003-07-07
2003-01-2612
Liquid and gas exchange within a particulate plant-rooting medium is likely to be altered in a microgravity environment. A difference in gravitational force can result in significant offsets in control parameters developed on earth for optimum plant growth, due to the shift in hydrostatic water distribution. The experiment being developed will examine the effects of variable gravity on water distribution and gas diffusion. We are developing and testing an automated gas diffusion measurement system for use on the International Space Station (ISS). To allow comparison of μg and 1g conditions, gas diffusion cell designs were horizontally oriented to minimize gravitational effects using 1) a ‘thin rectangular profile’ cell and 2) a cylindrical cell design for flight. Electronic solenoid valves provide air and water flow control while pressure transducers measure water and substrate potential.
X