Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Journal Article

Rapidly Pulsed Reductants in Diesel NOx Reduction by Lean NOx Traps: Effects of Mixing Uniformity and Reductant Type

2016-04-05
2016-01-0956
Lean NOx Traps (LNTs) are one type of lean NOx reduction technology typically used in smaller diesel passenger cars where urea-based Selective Catalytic Reduction (SCR) systems may be difficult to package . However, the performance of lean NOx traps (LNT) at temperatures above 400 C needs to be improved. The use of Rapidly Pulsed Reductants (RPR) is a process in which hydrocarbons are injected in rapid pulses ahead of a LNT in order to expand its operating window to higher temperatures and space velocities. This approach has also been called Di-Air (diesel NOx aftertreatment by adsorbed intermediate reductants) by Toyota. There is a vast parameter space which could be explored to maximize RPR performance and reduce the fuel penalty associated with injecting hydrocarbons. In this study, the mixing uniformity of the injected pulses, the type of reductant, and the concentration of pulsed reductant in the main flow were investigated.
Journal Article

Dual SCR Aftertreatment for Lean NOx Reduction

2009-04-20
2009-01-0277
Low-cost lean NOx aftertreatment is one of the main challenges facing high-efficiency gasoline and diesel engines operating with lean mixtures. While there are many candidate technologies, they all offer tradeoffs. We have investigated a multi-component Dual SCR aftertreatment system that is capable of obtaining NOx reduction efficiencies of greater than 90% under lean conditions, without the use of precious metals or urea injection into the exhaust. The Dual SCR approach here uses an Ag HC-SCR catalyst followed by an NH3-SCR catalyst. In bench reactor studies from 150 °C to 500 °C, we have found, for modest C/N ratios, that NOx reacts over the first catalyst to predominantly form nitrogen. In addition, it also forms ammonia in sufficient quantities to react on the second NH3-SCR catalyst to improve system performance. The operational window and the formation of NH3 are improved in the presence of small quantities of hydrogen (0.1–1.0%).
Technical Paper

Monitoring, Feedback and Control of Urea SCR Dosing Systems for NOx Reduction: Utilizing an Embedded Model and Ammonia Sensing

2008-04-14
2008-01-1325
This paper presents a monitoring, feedback and control system for SCR urea dosing utilizing an embedded model and NH3 sensing after the SCR for loop closing control. A one-dimensional SCR model was developed and embedded in a Simulink/Matlab environment. This embedded model is utilized for on-line, real time control of 32.5% aqueous urea dosing in the exhaust stream. Engine testing and simulation are used with the embedded SCR model and NH3 sensor closed loop feedback to demonstrate the advantages of this control approach for meeting both NOx emission requirements and NH3 slip targets. The paper explores these advantages under heavy duty FTP cycle conditions. The potential benefits include SCR size optimization and fuel consumption rate reduction under certain operating conditions.
Technical Paper

A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR

2009-04-20
2009-01-0907
The need for improved emissions control in lean exhaust to meet tightening, world-wide NOx emissions standards has led to the development of selective catalytic reduction of NOx with ammonia as a major technology for emissions control. Current systems are being designed to use a solution of urea (32.5 wt %) dissolved in water or Diesel Exhaust Fluid (DEF) as the ammonia source. While DEF or AdBlue® is widely used as a source of ammonia, it has a number of issues at low temperatures, including freezing below −12 °C, solid deposit formation in the exhaust, and difficulties in dosing at exhaust temperatures below 200 °C. Additionally creating a uniform ammonia concentration can be problematic, complicating exhaust packaging and usually requiring a discrete mixer.
Technical Paper

The Effects of Catalyst Volume and Ceria Content on the Emission Performance and Oxygen Storage Capacity of Automotive Catalysts

1993-10-01
932666
A study was performed to assess the effects of the catalyst volume and the ceria content in the washcoat on the aged emission performance of underfloor catalytic converters containing platinum and rhodium. Catalyst volumes of 1.4 L and 2.8 L were evaluated, while the ceria level was varied from 0 to 60% of the weight of the washcoat. The concentration of noble metals (g/L) was the same for both catalyst volumes, so the larger volume also contained more noble metal. Catalyst performance was evaluated on an air/fuel ratio sweep test, at steady-state conditions on an engine, and on the FTP test. In light of the new catalyst monitoring requirements for OBD II, each catalyst was also evaluated at steady-state conditions using a dual oxygen sensor technique in order to produce an O2 sensor index. The evaluations were performed at several intermediate stages as the catalysts were aged on engines using high temperature durability schedules intended to simulate high mileage conditions.
Technical Paper

Mechanistic Studies of the Catalytic Chemistry of NOx in Laboratory Plasma-Catalyst Reactors

2000-10-16
2000-01-2965
Several reactor systems have been used to study the catalytic chemistry of a particular proprietary zeolitic catalyst in conditions that mimic those found in light-duty diesel exhaust after a non-thermal plasma generator. Very similar catalytic results were obtained with NO + plasma or NO2 as the source of NOx using propene (C3H6) as the reductant. The formation of nitrogen, carbon dioxide, and other products were studied from 150°C to 250°C using a He balance gas and NOx in the form of NO2. The results demonstrate that nitrogen is formed by the selective catalytic reduction of NO2 by propene. The highest activity for N2 formation from NO2 was near 50% conversion at 200°C for a space velocity of 12,600 h-1. The NOx conversion by adsorption and by catalytic reduction was quantified. By performing studies with and without the presence of water, a clear separation in behavior between adsorption processes and catalytic reaction was observed.
X