Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Effects of Fuel Type on Dual SCR Aftertreatment for Lean NOx Reduction

2009-11-02
2009-01-2818
Global demand for alternative fuels to combat rising energy costs has sparked a renewed interest in catalysts that can effectively remediate NOx emissions resulting from combustion of a range of HC based fuels. Because many of these new engine technologies rely on lean operating environments to produce efficient power, the resulting emissions are also present in a lean atmosphere. While HCs are easily controlled in such environments, achieving high NOx conversion to N2 has continued to elude fully satisfactory solution. Until recently, most approaches have relied on catalysts with precious metals to either store NOx and subsequently release it as N2 under rich conditions, or use NH3 SCR catalysts with urea injection to reduce NOx under lean conditions. However, new improvements in Ag based technologies also look very promising for NOx reduction in lean environments.
Journal Article

Dual SCR Aftertreatment for Lean NOx Reduction

2009-04-20
2009-01-0277
Low-cost lean NOx aftertreatment is one of the main challenges facing high-efficiency gasoline and diesel engines operating with lean mixtures. While there are many candidate technologies, they all offer tradeoffs. We have investigated a multi-component Dual SCR aftertreatment system that is capable of obtaining NOx reduction efficiencies of greater than 90% under lean conditions, without the use of precious metals or urea injection into the exhaust. The Dual SCR approach here uses an Ag HC-SCR catalyst followed by an NH3-SCR catalyst. In bench reactor studies from 150 °C to 500 °C, we have found, for modest C/N ratios, that NOx reacts over the first catalyst to predominantly form nitrogen. In addition, it also forms ammonia in sufficient quantities to react on the second NH3-SCR catalyst to improve system performance. The operational window and the formation of NH3 are improved in the presence of small quantities of hydrogen (0.1–1.0%).
Technical Paper

Investigation of Catalytic Alternatives to Rhodium in Emissions Control

1992-02-01
920846
With the world-wide growth of the automotive emissions controls market, concerns about the future cost and availability of catalytic metals, particularly rhodium, have also grown. These factors have led to an increased interest in catalyst formulations which might allow reduced Rh usage or the complete removal of Rh from the catalyst without compromising the performance of emissions control systems. We have tested a set of catalysts to examine Ru, Ir, and Pd as alternatives to Rh, either alone or in combination with Pt. For the nine catalysts of Pt, Rh, Pd, Ru, Ir, Pt/Rh, Pt/Pd, Pt/Ru, and Pt/Ir studied, the loading of all constituent metals on 85 cu. in. monoliths in single or 1:1 dual component catalysts was 0.038 oz t, except for Rh which had a 0.0038 oz t loading. Most of the monoliths were evaluated after 0, 6, and 75 hours on a rapid aging test schedule using sweep, light-off, dynamometer and/or vehicle tests using the Federal Test Procedure (FTP).
Technical Paper

The Effects of Catalyst Volume and Ceria Content on the Emission Performance and Oxygen Storage Capacity of Automotive Catalysts

1993-10-01
932666
A study was performed to assess the effects of the catalyst volume and the ceria content in the washcoat on the aged emission performance of underfloor catalytic converters containing platinum and rhodium. Catalyst volumes of 1.4 L and 2.8 L were evaluated, while the ceria level was varied from 0 to 60% of the weight of the washcoat. The concentration of noble metals (g/L) was the same for both catalyst volumes, so the larger volume also contained more noble metal. Catalyst performance was evaluated on an air/fuel ratio sweep test, at steady-state conditions on an engine, and on the FTP test. In light of the new catalyst monitoring requirements for OBD II, each catalyst was also evaluated at steady-state conditions using a dual oxygen sensor technique in order to produce an O2 sensor index. The evaluations were performed at several intermediate stages as the catalysts were aged on engines using high temperature durability schedules intended to simulate high mileage conditions.
Technical Paper

The Role of Ceria in Automotive Exhaust Catalysis and OBD-II Catalyst Monitoring

1993-03-01
931034
Ceria has become an increasingly important component in automotive exhaust catalysts over the past decade. Recently, with the proposal that measurements of oxygen storage be used for the on-board evaluation of catalyst performance for both low emission vehicles (LEV) and non-LEV vehicles, understanding the role of ceria and its deterioration with catalyst aging has become even more important. It is well established that ceria in an alumina support promotes oxygen storage/release by automotive catalysts under cycled air/fuel conditions, which in turn promotes the catalyst's conversion performance under those conditions. Another benefit of ceria is its enhancement of the catalytic activity for other reactions, such as the water-gas shift reaction under rich conditions. In addition, ceria may help catalyst durability by promoting precious metal dispersion and playing some role as a stabilizer of the support.
Technical Paper

Computational Modeling of Diesel NOx Trap Desulfation

2005-10-24
2005-01-3879
The major challenge in diesel NOx aftertreatment systems using NOx adsorbers is their susceptibility to sulfur poisoning. A new computational model has been developed for the thermal management of NOx adsorber desulfation and describes the exothermic reaction mechanisms on the catalyst surface in the diesel NOx trap. Sulfur, which is present in diesel fuel, adsorbs as sulfates and accumulates at the same adsorption sites as NOx, therefore inhibiting the ability of the catalyst to adsorb NOx. Typically, a high surface temperature above 650 °C is required to release sulfur rapidly from the catalyst [1]. Since the peak temperatures of light-duty diesel engine exhaust are usually below 400 °C, additional heat is required to remove the sulfur. This report describes a new mathematical model that employs Navier-Stokes equations coupled with species transportation equations and exothermic chemical reactions.
Technical Paper

Experimental Evaluation of Reformate-Assisted Diesel NOx Trap Desulfation

2005-10-24
2005-01-3878
NOx adsorber catalysts are leading candidates for improving NOx aftertreatment in diesel exhaust. The major challenge in the use of adsorbers that capture NOx in the form of nitrates is their susceptibility to sulfur poisoning. Sulfur, which is present in diesel fuel, adsorbs and accumulates as sulfate (SO4-2) at the same adsorption sites as NOx, and, since it is more stable than nitrates, inhibits the ability of the catalyst to adsorb NOx. It is found that high temperature (> about 650 °C) in the presence of a reducing gas is required to release sulfur rapidly from the catalyst. Since the peak temperatures of diesel engine exhaust are below 400 °C, additional heat is required to remove the sulfur. This work describes a reformate-assisted “sulfur purge” method, which employs heat generated inside the NOx trap catalyst by exothermic chemical reactions between the oxygen in diesel exhaust and injected reformate (H2 + CO).
Technical Paper

NOx Reactivity Studies of Prototype Catalysts for a Plasma–Catalyst Aftertreatment System

1999-10-25
1999-01-3685
The reactivity of NOx over two prototype catalysts has been measured in a new bench reactor for characterizing plasma–catalyst systems that allows for in–situ post–analysis of any species which may have adsorbed on the catalyst. In these initial studies without a plasma, NO2 was used to mimic the NOx output of a plasma reactor in a blended feedstream that mimics diesel exhaust. The baseline performance of the catalysts was measured as a function of temperature, hydrocarbon concentration, hydrocarbon type, and water content, usually at a space velocity of 29,000 h–1. Performance was assessed in terms of the percent conversion of the incoming NO2 to desirable non–NOx N–containing species. For the better of the two catalysts the conversion without water present peaked in the 30–40% range between 125°C and 175°C using a propene/propane mixture of hydrocarbons in a 10:1 C1:N ratio. Experiments with NO as the NOx component yielded very poor activities.
X