Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Determination of biodiesel oxidation stability of biodiesel B100 with optical spectroscopies of eletronic absorption UV-Visible correlation with Rancimat method DIN EN 14112

2010-10-06
2010-36-0144
Biodiesel is a biodegradable fuel that consists of alkyl esters, obtained from renewable sources, vegetal oil and animal fats reacting with a short-chain of aliphatic alcohols (typically methanol or ethanol) in the presence of a catalyst (reaction known as transesterification). An important property to use the biodiesel as fuel in diesel engines is its oxidation stability because biodiesel can contain unsaturated fatty acids, which are susceptible to oxidation, being able to change into polymerized compounds, which can cause engine problems such as blocked fuel filters. Numerous analytical methods have been applied to determine oxidation stability, European Union and Brazil use the same method DIN EN 14112 - known as Rancimat method that consists in the sample heating to 110°C where the products formed by the decomposition are blown inside by a flow of air in to measurement cell with distilled water.
Technical Paper

Simulation Of Heat Transfer Properties And Residual Stress Analyses Of Cooling Curves Obtained From Quenching Studies

2005-11-22
2005-01-4178
This paper describes the use of computational simulation to examine the heat transfer properties and resulting residual stress obtained by quenching a standard probe into various quench oils. Cooling curves (time-temperature profiles) were obtained after immersing a preheated 12.5 mm dia. × 60 mm cylindrical Inconel 600 (Wolfson) probe with a Type K thermocouple inserted into the geometric center into a mineral oil quenchant. Different quenching conditions were used, as received (“fresh”) and after oxidation. Surface temperatures at the cooling metal - liquid quenchant interface and heat transfer coefficients are calculated using HT-Mod, a recently released computational code. Using this data, the temperature distribution was calculated. The corresponding residual stresses were calculated using ABAQUS. This work illustrates potential benefits of computational simulation to examine the expected impact of different quenchants and quenching conditions on a heat treatment process.
Technical Paper

Strategies for Developing Performance Standards for Alternative Hydraulic Fluids

2000-09-11
2000-01-2540
There has been an ongoing interest in replacing mineral oil with more biodegradable and/or fire-resistant hydraulic fluids in many mobile equipment applications. Although many alternative fluids may be more biodegradable, or fire-resistant, or both than mineral oil, they often suffer from other limitations such as poorer wear, oxidative stability, and yellow metal corrosion which inhibit their performance in high-pressure hydraulic systems, particularly high pressure piston pump applications. From the fluid supplier's viewpoint, the development of a definitive test, or series of tests, that provides sufficient information to determine how a given fluid would perform with various hydraulic components would be of interest because it would minimize extensive testing. This is often too slow or prohibitively expensive. Furthermore, from OEM's (original equipment manufacturer's) point of view, it would be advantageous to develop a more effective, industry accepted fluid analysis screening.
X