Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hybrid III Sternal Deflection Associated with Thoracic Injury Severities of Occupants Restrained with Force-Limiting Shoulder Belts

1991-02-01
910812
A relationship between the risk of significant thoracic injury (AIS ≥ 3) and Hybrid III dummy sternal deflection for shoulder belt loading is developed. This relationship is based on an analysis of the Association Peugeot-Renault accident data of 386 occupants who were restrained by three-point belt systems that used a shoulder belt with a force-limiting element. For 342 of these occupants, the magnitude of the shoulder belt force could be estimated with various degrees of certainty from the amount of force-limiting band ripping. Hyge sled tests were conducted with a Hybrid III dummy to reproduce the various degrees of band tearing. The resulting Hybrid III sternal deflections were correlated to the frequencies of AIS ≥ 3 thoracic injury observed for similar band tearing in the field accident data. This analysis indicates that for shoulder belt loading a Hybrid III sternal deflection of 50 mm corresponds to a 40 to 50% risk of an AIS ≥ 3 thoracic injury.
Technical Paper

Investigation of Inflatable Belt Restraints

1991-10-01
912905
Studies conducted in the 1970's suggested that inflatable belt restraints might provide a high level of occupant protection based on experiments with dummies, cadavers and volunteers. Although inflating the belt was one factor which contributed to achieving these experimental results, much of the reported performance was associated with other features in the restraint system. Exploratory experiments with the Hybrid III dummy indicated similar trends to previous studies, belt inflation reducing dummy response amplitudes by pretensioning and energy absorption while reducing displacement. The potential advantage of an increased loaded area by an inflatable belt could not be objectively demonstrated from previous studies or from dummy responses. Clearly, belt inflation can be one component of a belt restraint system which tends to reduce test response amplitudes. However, other belt system configurations have demonstrated similar test response amplitudes.
X