Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Research on Particle Emissions of Modern 2-Stroke Scooters

2006-04-03
2006-01-1078
Limited and nonlimited emissions of scooters were analysed during several annual research programs of the Swiss Agency of Environment Forests and Landscape (SAEFL, BUWAL)*). Small scooters, which are very much used in the congested centers of several cities are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburetor were performed. The nanoparticulate emissions with different lube oils and fuels were measured by means of SMPS, (CPC) and NanoMet *). Also the particle mass emission (PM) was measured with the same method as for Diesel engines. Extensive analyses of PM-residuum for PAH & SOF/INSOF, as well as for VOC were carried out in an international project network.
Technical Paper

Measurement of the Number and Size Distribution of Particle Emissions from Heavy Duty Engines

2000-06-19
2000-01-2000
Air quality monitoring of PM10 and associated health studies have focused interest on the size and the number of particles emitted to, and found in, the atmosphere. Automotive sources are one of the important elements in this, and CONCAWE have completed a study of heavy duty diesel particle emissions, complementing their previously reported light duty work. This heavy duty programme, presented here, investigated the nature of particulate emissions from two heavy duty engines (representative of different emissions levels), operating on three marketed fuels, over their respective European legislative heavy duty test cycles. The programme has investigated some of the complexities associated with obtaining credible data (e.g. dilution ratios, system stabilisation time etc.). The number distributions, which were measured over a wide size range (3 to 1000 nm), have been split into two size ranges, representative of nucleation mode and accumulation mode particles.
Technical Paper

Gaseous Emissions from Gasoline-to-CNG/LPG Converted Motorcycles

2015-04-14
2015-01-1733
The increasing urbanization level of many countries around the globe has led to a rapid increase of mobility demand in cities. Although public transport may play an important role, there are still many people relying on private vehicles, and, especially in urban areas, motorcycles and scooters can combine handling and flexibility with lower cost of operation compared to passenger cars. However, in spite of their lower fuel demand, they might significantly contribute to air pollution, lagging behind cars in terms of emission performances. The aim of this paper is to provide the scientific community with the results of an exploratory test campaign on four different motorcycles, converted from gasoline to CNG by means of an after-market conversion kit. A fifth motorcycle, similarly converted from gasoline to LPG, was also tested. These vehicles are powered by 4-strokes engines with a displacement ranging from 50 to 250 cm3 and a power ranging from 3.0 to 16.5 kW.
X