Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hybrid Experimental-Analytical Simulation of Structure-Borne Noise and Vibration Problems In Automotive Systems

1992-02-01
920408
The design of automotive components for low structure-borne interior noise and vibration requires the ability to reliably simulate total vehicle system response over a wide operating frequency range. This implies that the car body, its interior acoustic cavity, and critical structural components must be included in this overall dynamic model. Unfortunately, most noise and vibration problems occur in the 200-1000 Hz frequency range where existing finite element and experimental modal methods have limited applicability. This is due to the high modal density, high damping levels, and sensitivity to fine geometric detail. Moreover, it is highly doubtful that these methods will ever be practical tools for the study of the total body dynamics over the frequency range of 200-1000Hz. In this paper, a practical hybrid experimental-analytical approach is proposed in response to the need to simulate high frequencies structure-borne noise and vibration in automotive systems.
Technical Paper

Practical Considerations of Vehicle Noise and Vibration Simulation Using an Improved Dynamic Impedance Method

1993-05-01
931313
The design of automotive components for low structure-borne interior noise and vibration is facilitated by the ability to reliably simulate total vehicle system response over a wide operating frequency range. This requires that the car body, its interior acoustic cavity, and critical chassis components must be included in the overall dynamic model. Unfortunately, most noise and vibration problems occur in the 200-1000 Hz frequency range where finite element and experimental modal methods have limited applicability. This is due to the high modal density, high damping levels, and sensitivity to fine geometric detail. A simulation method has been proposed earlier which uses component finite element models and component experimental transfer functions to predict combined system response [1]. This method has allowed for a practical approach to automotive system noise and vibration simulation.
X