Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Lateral Load Sensing Hybrid III Head

1991-10-01
912908
Recent cadaver studies have provided data for the development of force and stiffness characteristics of the side of the human head. A Hybrid III Anthropomorphic Test Dummy (ATD) head was modified to allow direct measurement of impact forces on the parietal and temporal regions by recasting the upper left half of the skull and installing triaxial piezoelectric force transducers. Dynamic impact tests of this modified head were conducted and force/stiffness characteristics for the temporal and parietal areas were compared to existing data on cadaver subjects. It was found that the existing Hybrid III vinyl skin satisfactorily represents the force/stiffness characteristics of the human head in these areas. This modified Hybrid III dummy head was also impacted against typical interior components likely to be contacted during a side impact. The force and acceleration test results are presented.
Technical Paper

Effect of Seat Stiffness in Out-of-Position Occupant Response in Rear-End Collisions

1996-11-01
962434
Accident data suggest that a significant percentage of rear impacts involve occupants seated in other than a “Normal Seated Position”. Pre-impact acceleration due to steering, braking or a prior frontal impact may cause the driver to move away from the seat back prior to impact. Nevertheless, virtually all crash testing is conducted with dummies in the optimum “Normal Dummy Seated Position”. A series of 7 rear impact sled tests, having a nominal AV of 21 mph, with Hybrid III dummies positioned in the “Normal Dummy Seated Position”, “Out of Position” and slightly “Out of Position” is presented. Tests were performed on yielding production Toyota and Mercedes Benz seats as well as on a much stiffer modified Ford Aerostar seat. Available Hybrid III upper and lower neck as well as torso instrumentation was used to analyze and compare injury potential for each set of test parameters.
X