Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Comparison Studies of Candidate Nutrient Delivery Systems for Plant Cultivation in Space

1997-07-01
972304
A reliable nutrient delivery system is essential for long-term cultivation of plants in space. At the Kennedy Space Center, a series of ground-based tests are being conducted to compare candidate plant nutrient delivery systems for space. To date, our major focus has concentrated on the Porous Tube Plant Nutrient Delivery System, the ASTROCULTURE™ System, and a zeoponic plant growth substrate. The merits of each system are based upon the performance of wheat supported over complete growth cycles. To varying degrees, each system supported wheat biomass production and showed distinct patterns for plant nutrient uptake and water use.
Technical Paper

Baseline Environmental Testing of Candidate Salad Crops with Horticultural Approaches and Constraints Typical of Spaceflight

2003-07-07
2003-01-2481
The first spaceflight opportunities for Advanced Life Support (ALS) Project testing with plants will likely occur with missions on vehicles in Low Earth Orbit, such as the International Space Station (ISS). In these settings, plant production systems would likely be small chambers with limited electrical power. Such systems are adequate for salad-type crops that provide moderate quantities of fresh, flavorful foods to supplement the crew diet. Successful operation of salad crop systems in the space environment requires extensive ground-based testing with horticultural methodologies that meet expected mission constraints. At Kennedy Space Center, cultivars of radish, onion, and lettuce are being compared for performance under these “flight-like” conditions.
Technical Paper

Effects of Lighting Intensity and Supplemental CO2 on Yield of Potential Salad Crops for ISS

2004-07-19
2004-01-2296
Radish (Raphanus sativus L.), green onion (Allium fistulosum L.), and lettuce (Lactuca sativa L.) are among several “salad” crop species suggested for use on the International Space Station (ISS) as a supplement to the crew’s diet. Among the more important factors affecting the crop yields will be the light intensity or photosynthetic photon flux (PPF) used to grow the plants. Radish (cv. Cherry Bomb), green onion (cv. Kinka), and lettuce (cv. Flandria) plants were grown for 35 days in growth chambers at 8.6, 17.2, and 26 mol m−2 d−1 (150, 300, or 450 μmol m−2 s−1 PPF, respectively) with a 16 hr photoperiod and cool-white fluorescent lamps and either 400 or 1200 μmol mol−1 CO2. Final (35-day) edible yields were taken for the treatments under ambient or supplemented CO2. Results showed a response of growth to incident PPF that indicated a strong influence of lighting on yields.
Technical Paper

Spinach: Nitrate Analysis of an Advanced Life Support (ALS) Crop Cultured Under ALS Candidate Artificial Light Sources

1999-07-12
1999-01-2107
Nitrate concentration in spinach and lettuce is known to be influenced by light quantity. The enzyme nitrate reductase is regulated by phytochrome in some species, and in the presence of light, electrons that reduce nitrite to ammonium come from photosynthetic electron transport. It was hypothesized that light quality as well as light quantity may be used to manipulate nitrate concentration in spinach. To test this, narrow-band wavelength light-emitting diode (LED) sources (670 nm and 735 nm peak emission) were utilized in combination with cool white fluorescent (CWF) lamps. Nitrate concentration was compared in spinach seedlings grown for four weeks under CWF, followed by one of three 5-day pre-harvest light treatments. The three different light quality regimes were 1) CWF, 2) CWF + RED (670 nm) LED, and 3) CWF + FR (735 nm LED).
Technical Paper

Designing Experiments for Direct Measurement of Wheat Photosynthesis in Microgravity

1999-07-12
1999-01-2179
Procedures were developed for a future experiment to measure wheat (Triticum aestivum L.) photosynthesis in microgravity. Specific attention was given to growing and maintaining vigorous wheat plants relative to the challenging conditions predicted in microgravity. These ground-based tests included comparisons of different rooting media, media, wicking materials, and nutrient delivery system pressures. To facilitate seed germination in microgravity, several clinostat tests were conducted to characterize the importance of initial seed orientation. Following establishment of a vigorous crop canopy, photosynthesis rates were measured and found to be affected by mutual plant shading within the growth chambers.
X