Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Potential of Lightweight Materials and Advanced Combustion Engines to Reduce Life Cycle Energy and Greenhouse Gas Emissions

2014-04-01
2014-01-1963
As lightweight materials and advanced combustion engines are being used in both conventional and electrified vehicles with diverse fuels, it is necessary to evaluate the individual and combined impact of these technologies to reduce energy and greenhouse gas (GHG) emissions. This work uses life cycle assessment (LCA) to evaluate the total energy and GHG emissions for baseline and lightweight internal combustion vehicles (ICVs), hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) when they are operated with baseline and advanced gasoline and ethanol engines. Lightweight vehicle models are evaluated with primary body-in-white (BIW) mass reductions using aluminum and advanced/high strength steel (A/HSS) and secondary mass reductions that include powertrain re-sizing. Advanced engine/fuel strategies are included in the vehicle models with fuel economy maps developed from single cylinder engine models.
Technical Paper

Life Cycle Assessment of a Transmission Case: Magnesium vs. Aluminum

1998-02-23
980470
This paper describes a Life Cycle Assessment (LCA) done to evaluate the relative environmental performance of magnesium (Mg) and aluminum (Al) automatic transmission cases. Magnesium is considered a lighter weight substitute for aluminum in this application. Light weighting of vehicles increases fuel economy and is an important vehicle design metric. The objective of this LCA is to quantify energy and other environmental trade-offs associated with each alternative for material production, manufacturing, use, and end-of-life management stages. Key features of the inventory modeling and the data collection and analysis methods are included in this paper along with life cycle inventory profiles of aluminum and magnesium alternatives. The life cycle inventory (LCI) was interpreted using a set of environmental metrics and areas needing further research were identified. A qualitative cost assessment was done in conjunction with this LCA to highlight potential cost drivers.
X