Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

HYBRID III DUMMY NECK RESPONSE TO AIR BAG LOADING

2001-06-04
2001-06-0130
This paper discusses issues related to the Hybrid III dummy head/neck response due to deploying air bags. The primary issue is the occurrence of large moment at the occypital condyles of the dummy, when the head-rotation with respect to the torso is relatively small. The improbability of such an occurrence in humans is discussed in detail based on the available biomechanical data. A secondary issue is the different anthropometric characteristics of the head/neck region of the Hybrid III dummy when compared to humans. Different modes of interaction between the deploying air bag and the Hybrid III dummy’s neck are discussed. Key features of the dummy’s response in these interaction modes have been described in light of the laxity of the atlanto-occypital joint and the effect of the neck muscle pairs. Issues for improving the biofidelity of the Hybrid III dummy’s neck response due to deploying air bags are discussed.
X