Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

On-Road NOx Emission Rates from 1994-2003 Heavy-Duty Diesel Trucks

2008-04-14
2008-01-1299
In-service 1994-2003 heavy-duty trucks were acquired by West Virginia University (WVU), equipped with the WVU Mobile Emissions Measurement System (MEMS) to measure on-road NOx, and driven on road routes near Sabraton, West Virginia, and extending up to Washington, PA to obtain real-world oxides of nitrogen (NOx) emissions data on highways and local roads. The MEMS measured 5Hz NOx, and load was obtained from the electronic control unit. Trucks were loaded to about 95% of their gross vehicle weights. Emissions in g/mi and g/bhp-hr were computed over the various road routes. In addition, some of the trucks were tested 1 to 2 years later to determine emission changes that may have occurred for these trucks. Emission results varied significantly over the different road routes due to different speeds, driving patterns, and road grades.
Journal Article

The Effect of Cetane Improvers and Biodiesel on Diesel Particulate Matter Size

2011-04-12
2011-01-0330
Heavy-duty diesel engines (HDDE), because of their widespread use and reputation of expelling excessive soot, have frequently been held responsible for excessive amounts of overall environmental particulate matter (PM). PM is a considerable contributor to air pollution, and a subject of primary concern to health and regulatory agencies worldwide. The U.S. Environmental Protection Agency (EPA) has provided PM emissions regulations and standards of measurement techniques since the 1980's. PM standards set forth by the EPA for HDDEs are based only on total mass, instead of size and/or concentration. The European Union adopted a particle number emission limit, and it may influence the U.S. EPA to adopt particle number or size limits in the future. The purpose of this research was to study the effects biodiesel blended fuel and cetane improvers have on particle size and number.
Technical Paper

Emissions from Diesel-Fueled Heavy-Duty Vehicles in Southern California

2003-05-19
2003-01-1901
Few real-world data exist to describe the contribution of diesel vehicles to the emissions inventory, although it is widely acknowledged that diesel vehicles are a significant contributor to oxides of nitrogen (NOx) and particulate matter (PM) in Southern California. New data were acquired during the Gasoline/Diesel PM Split Study, designed to collect emissions data for source profiling of PM emissions from diesel- and gasoline-powered engines in the South Coast (Los Angeles) Air Basin in 2001. Regulated gases, PM and carbon dioxide (CO2) were measured from 34 diesel vehicles operating in the Southern California area. Two were transit buses, 16 were trucks over 33,000 lbs. in weight, 8 were 14,001 lbs. to 33,000 lbs. in weight and 8 were under 14,001 lbs. in weight. The vehicles were also grouped by model year for recruiting and data analysis.
Technical Paper

The Influence of High Reactivity Fuel Properties on Reactivity Controlled Compression Ignition Combustion

2017-09-04
2017-24-0080
Reactivity controlled compression ignition (RCCI) is a form of dual-fuel combustion that exploits the reactivity difference between two fuels to control combustion phasing. This combustion approach limits the formation of oxides of nitrogen (NOX) and soot while retaining high thermal efficiency. The research presented herein was performed to determine the influences that high reactivity (diesel) fuel properties have on RCCI combustion characteristics, exhaust emissions, fuel efficiency, and the operable load range. A 4-cylinder, 1.9 liter, light-duty compression-ignition (CI) engine was converted to run on diesel fuel (high reactivity fuel) and compressed natural gas (CNG) (low reactivity fuel). The engine was operated at 2100 revolutions per minute (RPM), and at two different loads, 3.6 bar brake mean effective pressure (BMEP) and 6 bar BMEP.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Impact of Vehicle Weight on Truck Behavior and Emissions, using On-Board Measurement

2005-10-24
2005-01-3788
On-board emissions measurement for heavy-duty vehicles has taken on greater significance because new standards now address in-use emissions levels in the USA. Emissions compliance must be shown in a “Not-to-exceed” (NTE) zone that excludes engine operation at low power. An over-the-road 1996 Peterbilt tractor was instrumented with the West Virginia University Mobile Emissions Measurement System (MEMS). The researchers determined how often the truck entered the NTE, and the emissions from the vehicle, as it was driven over different routes and at different test weights (20,740 lb, 34,640 lb, 61,520 lb, and 79,700 lb) The MEMS interfaced with the truck ECU, while also measuring exhaust flowrate, and concentrations of carbon dioxide (CO2) and oxides of nitrogen (NOx) in the exhaust. The four test routes that were employed included varying terrain types in order to simulate a wide range of on-road driving conditions. One route (called the Bruceton route) included a sustained hill climb.
Technical Paper

Comparative Emissions from Diesel and Biodiesel Fueled Buses from 2002 to 2008 Model Years

2010-10-05
2010-01-1967
Fuel economy and regulated emissions were measured from eight forty-foot transit buses operated on petroleum diesel and a “B20” blend of 80% diesel fuel and 20% biodiesel by volume. Use of biodiesel is attractive to displace petroleum fuel and reduce an operation's carbon footprint. Usually it is assumed that biodiesel will also reduce particulate matter (PM) emissions relative to those of petroleum diesel. Model years of the vehicles evaluated were newer 2007-08 Gillig low-floor buses, 2005 Gillig Phantom buses, and a 2002 Gillig Phantom bus. Engine technology represented three different emissions standards, and included buses with OEM diesel particulate filters. Each bus was evaluated using two transient speed-time schedules, the Orange County Transit Authority (OCTA) driving schedule which represents moderate speed urban/suburban operation and the Urban Dynamometer Driving Schedule (UDDS) which represents a mix of suburban and higher speed on-highway operation.
Technical Paper

Biodiesel Blend Emissions of a 2007 Medium Heavy Duty Diesel Truck

2010-10-05
2010-01-1968
Biodiesel may be derived from either plant or animal sources, and is usually employed as a compression ignition fuel in a blend with petroleum diesel (PD). Emissions differences between vehicles operated on biodiesel blends and on diesel have been published previously, but data do not cover the latest engine technologies. Prior studies have shown that biodiesel offers advantages in reducing particulate matter, with either no advantage or a slight disadvantage for oxides of nitrogen emissions. This paper describes a recent study on the emissions impact of two biodiesel blends B20A, made from 20% animal fat (tallow) biodiesel and 80% PD, and B20B, obtained from 20% soybean biodiesel and 80% PD. These blends used the same PD fuel for blending and were contrasted with the same PD fuel as a reference. The research was conducted on a 2007 medium heavy-duty diesel truck (MHDDT), with an engine equipped with Exhaust Gas Recirculation (EGR) and a Diesel Particulate Filter (DPF).
Technical Paper

Emissions from a Legacy Diesel Engine Exercised through the ACES Engine Test Schedule

2008-06-23
2008-01-1679
Most transient heavy duty diesel emissions data in the USA have been acquired using the Federal Test Procedure (FTP), a heavy-duty diesel engine transient test schedule described in the US Code of Federal Regulations. The FTP includes both urban and freeway operation and does not provide data separated by driving mode (such as rural, urban, freeway). Recently, a four-mode engine test schedule was created for use in the Advanced Collaborative Emission Study (ACES), and was demonstrated on a 2004 engine equipped with cooled Exhaust Gas Recirculation (EGR). In the present work, the authors examined emissions using these ACES modes (Creep, Cruise, Transient and High-speed Cruise) and the FTP from a Detroit Diesel Corporation (DDC) Series 60 1992 12.7 liter pre-EGR engine. The engine emissions were measured using full exhaust dilution, continuous measurement of gaseous species, and filter-based Particulate Matter (PM) measurement.
X