Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Vehicle Characterization Through Pole Impact Testing, Part I: Vehicle Response in Terms of Acceleration Pulses

2004-03-08
2004-01-1210
The shape of an acceleration pulse in an impact is not only affected by the change in velocity, but also by the geometry and stiffness of the both the striking vehicle and the struck object. In this paper, the frontal crash performance of a full-size pickup is studied through a series of impact tests with a rigid pole and with a flat barrier. Each rigid pole test is conducted at one of four locations across the front of the vehicle and at impact speeds of 10 mph, 20 mph, or 30 mph. The flat barrier tests are conducted at 10 mph, 15 mph, 20 mph, and 30 mph. The vehicle crush and acceleration pulses resulting from the pole tests are compared to those resulting from the barrier tests. The severity of pole impacts and the severity of flat barrier impacts are compared based on peak accelerations and pulse durations of the occupant compartment.
Technical Paper

Modeling of Rollover Sequences

1993-11-01
931976
This paper will illustrate the development of the modeling of rollover sequences. During the past few years, a lot of research has been focused on the rollover propensity of vehicles. As to what happens after the vehicle rolls over, attention is only paid to occupant kinematics and occupant injury. Some simple questions such as how many rolls in the rollover are not answered unless a rollover test is run. The rollover sequences including roll number, roll speed and roll distance are very important to the accident reconstructionists as well as design engineers. Since the cost for running a rollover test is so high today, it is very economic and time-efficient to obtain the preliminary results from a mathematical model. Roll number and roll distance versus time are to be obtained through the mathematical model which is based on several rollover tests, vehicle inertia parameters, and the Coulomb friction, a non-linear term in the equation.
Technical Paper

Spot Weld Failure Analysis for Accident Reconstruction

1994-03-01
940570
Adequacy of resistance spot welds in low carbon steels in relation to structural integrity can become an issue in the reconstruction of automotive accidents. Because formation of a plug (or button or slug) in a peel test is used as a quality control criterion for welds, it is sometimes assumed conversely that a weld which failed is defective if no plug is present. Spot welds do not necessarily form a plug when fractured. Fracture behavior of spot welds both by overload and fatigue is reviewed. Then techniques for examination of field failures are discussed. Finally two case histories are discussed.
Technical Paper

Vehicle and Occupant Response in Heavy Truck to Car Low-Speed Rear Impacts

1997-02-24
970120
Despite efforts by industry to reduce the problem of injury in rear impacts, there continues to be a large number of such claims. This is true even in low speed impacts which result in little or no damage to the vehicles involved. Recent studies of such incidents have been described in the literature. These studies have concentrated primarily on simple bumper to bumper impacts where the front bumper of the striking vehicle contacts the rear bumper of the struck vehicle. Perhaps a more common type of rear impact is one in which the bumper of the striking vehicle rides over or under the rear bumper of the struck vehicle. The heavy truck to car rear impact is an example of an overriding impact. This paper describes several staged impacts of this type in which vehicle and occupant responses were measured using fully instrumented Hybrid III dummies or human volunteers.
Technical Paper

The Effects of Suspension Stiffness on Handling Responses

1991-09-01
911928
The purpose of this paper is to investigate the influence of suspension roll stiffness on handling responses. A linear mathematical model is utilized to scrutinize responses on sideslip, yaw velocity and roll angle. Due to different sensitivity to suspension roll stiffness, the influence on an oversteer and an understeer vehicle is very distinct. An oversteer vehicle possesses high sensitivity to suspension stiffness at high speeds. Forward speed also plays an important role. Responses in root locus plots and steady state gains are illustrated in this study.
Technical Paper

Delta-V, Barrier Equivalent Velocity and Acceleration Pulse of a Vehicle During an Impact

2005-04-11
2005-01-1187
Delta-V and Barrier Equivalent Velocity (BEV) are terms that have been used for many years to describe aspects of what happened to a vehicle when an impact occurred. That is, they are used to describe some physical change in the vehicle state before the impact as compared to after the impact. Specifically, the Delta-V describes the change in the vehicle velocity vector from just before the impact until just after the impact. The BEV attempts to quantify the energy required to cause the damage associated with an impact. In order to understand what happens to a vehicle and its occupants during an impact, it is necessary to examine the acceleration pulse undergone by the vehicle during the impact. The acceleration pulse describes, in detail, how the Delta-V occurs as a function of time, and is related with the deformation of the vehicle as well as the object contacted by the vehicle during an impact.
Technical Paper

Pole Impact Speeds Derived from Bilinear Estimations of Maximum Crush for Body-On-Frame Constructed Vehicles

2004-03-08
2004-01-1615
Accident reconstructionists use several different approaches to determine vehicle equivalent impact speed from damage due to narrow object impacts. One method that is used relates maximum crush to equivalent impact speed with a bilinear curve. In the past, this model has been applied to several passenger cars with unibody construction. In this paper, the approach is applied to a body-on-frame vehicle. Several vehicle-to-rigid pole impact tests have been conducted on a full-size pickup at different speeds and impact locations: centrally located across the vehicle's front and outside the frame rail. A bilinear model relating vehicle equivalent impact speed to maximum crush is developed for the impact locations. These results are then compared to results obtained from other body-on-frame vehicles as well as unibody vehicles. Other tests such as impacts on the frame rail and barrier impacts are also presented. Limitations to this bilinear approach are discussed.
X