Refine Your Search

Search Results

Technical Paper

Numerical Simulation of the Flow Field and Fuel Sprays in an IC Engine

1987-02-01
870599
A two-dimensional, implicit finite-difference method of the control-volume variety, a two-equation model of turbulence, and a discrete droplet model have been used to study the flow field, turbulence levels, fuel penetration, vaporization and mixing in Diesel engine-type environments. Good agreement with the droplet penetration data of Hiroyasu and Kadota has been obtained for a range of ambient pressures neglecting the effects of void fraction, droplet coalescence and droplet collisions in the simulation. The model has also been used to study the effects of the intake swirl angle on the flow field, turbulence levels, fuel penetration, vaporization and mixing in a two-stroke Diesel engine operating under motored conditions. Numerical simulations indicate that as the intake swirl angle is increased, the fuel penetration, vaporization and mixing increase.
X