Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Wingtip Vortex Turbine Investigation for Vortex Energy Recovery

1990-09-01
901936
A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15° twist (washin) and one with no twist. The power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.
Technical Paper

Wing Modification for Increased Spin Resistance

1983-02-01
830720
A simple wing leading-edge modification has been developed that delays outer wing panel stall, thus maintaining roll damping to higher angles of attack and delaying the onset of autorotation. The stall angle of attack of the outer wing panel has been shown to be a function of the spanwise length of the leading-edge modification. The margin of spin resistance provided by the modification is being explored through flight tests. Preliminary results have been used to evaluate spin resistance in terms of the difference in angle of attack between outer wing panel stall and the maxiumum attainable angle of attack.
Technical Paper

Spin Resistance Evaluation of a Light Airplane

1987-05-01
871021
A brief history of stall/spin technology for light general aviation airplanes and proposed criteria to describe desirable characteristics of a spin-resistant airplane are presented. Flight tests of a representative light airplane to evaluate compliance with and usefulness of the criteria are presented. The baseline airplane configuration would not meet the spin resistance criteria. Tests of the airplane with a wing leading edge modification to enhance its spin resistance showed compliance with the proposed criteria.
Technical Paper

Spin Resistance Development for Small Airplanes - A Retrospective

2000-05-09
2000-01-1691
With the resurgence of the General Aviation industry, the incentive to develop new airplanes for the low-end market has increased. Increased production of small airplanes provides the designers and manufacturers the opportunity to incorporate advanced technologies that are not readily retrofitable to existing designs. Spin resistance is one such technology whose development was concluded by NASA during the 1980’s when the production of small airplanes had slipped into near extinction. This paper reviews the development of spin resistance technology for small airplanes with emphasis on wing design. The definition of what constitutes spin resistance and the resulting amendment of the Federal Aviation Regulations Part 23 to enable certification of spin resistant airplanes are also covered.
X