Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications

2011-04-12
2011-01-1312
Selective Catalytic Reduction (SCR) catalysts have been demonstrated as an effective solution for controlling NOx emissions from diesel engines. Typical 2010 Heavy-Duty systems include a DOC along with a catalyzed soot filter (CSF) in addition to the SCR sub-assembly. There is a strong desire to further increase the NOx conversion capability of such systems, to enable additional fuel economy savings by allowing engines to be calibrated to higher engine-out NOx levels. One potential approach is to replace the CSF with a diesel particulate filter coated with SCR catalysts (SCR-DPF) while keeping the flow-through SCR elements downstream, which essentially increases the SCR volume in the after-treatment assembly without affecting the overall packaging. In this work, a system consisting of SCR-DPF was evaluated in comparison to the DOC + CSF components from a commercial 2010 DOC + CSF + SCR system on an engine with the engine EGR on (standard engine-out NOx) and off (high engine-out NOx).
Journal Article

Gasoline Cold Start Concept (gCSC™) Technology for Low Temperature Emission Control

2014-04-01
2014-01-1509
Stricter emission standards in the near future require not only a high conversion efficiency of the toxic air pollutants but also a substantial reduction of the greenhouse gases from automotive exhaust. Advanced engines with improved fuel efficiency can reduce the greenhouse gas emissions; their exhaust temperature is, however, also low. This consequently poses significant challenges to the emission control system demanding the catalysts to function at low temperatures both during the cold start period and under the normal engine operation conditions. In this paper, we will introduce a gasoline Cold Start Concept (gCSC™) technology developed for advanced stoichiometric-burn gasoline engines to meet future stringent emission regulations. To improve the low temperature performance of three-way catalysts, a novel Al2O3/CeO2/ZrO2 mixed oxide was developed.
Technical Paper

The Application of a NOx Absorber Catalyst System on a Heavy-Duty Diesel Engine

2005-04-11
2005-01-1084
The modern Diesel engine is one of the most versatile power sources available for mobile applications. The high fuel economy and power of the Diesel engine has long made it the choice for heavy-duty applications worldwide. Over the coming years, global emissions legislation applied to heavy-duty Diesel (HDD) engines will become more and more stringent, necessitating the use of advanced emissions control technologies. In particular, the coming exhaust gas emissions legislation focuses on particulate matter (PM) emissions and emissions of nitrogen oxides (NOx). A filtration device can control PM emissions, and a possible technology for the abatement of NOx emissions involves NOx absorber catalysts. This paper describes investigations into the activity and system behaviour of a prototype HDD exhaust system based on NOx absorber technology. The system consists of a “single leg” containing NOx absorber catalyst that is bypassed during rich regeneration of the NOx absorbers.
Journal Article

Durability Assessment of Diesel Cold Start Concept (dCSC™) Technologies

2017-03-28
2017-01-0955
The phase-in of US EPA Tier 3 and California LEV III emission standards require further reduction of tailpipe criteria pollutants from automobiles. At the same time, the mandate for reducing Green House Gas (GHG) emissions continuously lowers the exhaust temperature. Both regulations pose significant challenges to emission control catalyst technologies, especially for cold start emissions. The recently developed diesel cold start concept technology (dCSC™) shows promising results. It stores NOx and HC during the cold start period until the downstream catalytic components reach their operating temperatures, when the stored NOx/HC are subsequently released and converted. The technology also has oxidation functions built in and acts as a diesel oxidation catalyst under normal operating conditions. In a US DOE funded project, the diesel cold start concept technology enabled a high fuel efficiency vehicle to achieve emissions targets well below the SULEV30 emission standards.
X