Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Acoustics of Turbochargers

2007-05-15
2007-01-2205
Noise from turbo-chargers is increasingly becoming an issue. Partly due to improved noise control of other components and partly due to increased specific mass flows. Despite that the turbocharging technique was developed in the first part of the last century the acoustical behavior is still a field where there is a lack of research. In this paper an overview of the existing research is presented including the work done in the EC-project ARTEMIS. Some first results from recently started investigations at the new gas management research centre, KTH CICERO, will also be described. A turbo-unit always consists of a compressor which normally is driven by an exhaust turbine. Both the turbine and the compressor will have an influence on how the low frequency engine pulsations propagate in the intake/exhaust system. This is referred to as the passive acoustic property of the turbo-unit.
Technical Paper

Acoustic Analysis of Small Engine Catalytic Converters

2010-09-28
2010-32-0022
Today, catalytic converters are widely used in small engine exhaust systems to reduce pollutants. Besides reducing harmful pollutants, these devices have a significant effect on the acoustical performance and the pressure drop of the engine exhaust system. A catalytic converter is known to have two distinct acoustic effects: the reactive effect originating from the acoustic wave reflections caused by cross-sectional area changes within the unit and the resistive effect which results in the acoustic wave dissipation caused by viscous losses. The pressure drop in the narrow tubes in the catalytic converter element results in frequency dependent resistive effects on the transmitted sound. In this paper the passive acoustic effect which treats the sound attenuation in the catalytic converters has been investigated. An experimental investigation on small engine catalytic converters treated as acoustic two-ports is carried out.
Technical Paper

Acoustic Studies on Small Engine Silencer Elements

2011-11-08
2011-32-0514
A modern exhaust silencer system designed for an internal combustion engine typically incorporates a number of acoustic elements, which all contribute in the overall acoustic performance of the system and determine the sound radiation into the surroundings. The characteristics of individual elements in acoustic silencers affecting sound propagation are referred to as the passive acoustic effect treated in this paper. An acoustic transmission loss is a parameter often used in engineering to describe the passive acoustic performance of exhaust system elements. However, in order to provide a complete acoustical characterization of silencers and silencer components the acoustic 2-port elements (the scattering matrix or alternatively the transfer matrix) should be additionally analyzed. In this paper the scattering matrixes are studied systematically for several small engine silencer elements in a variety of operating conditions.
Technical Paper

The Passive Acoustic Effect of Automotive Catalytic Converters

2011-09-11
2011-24-0219
For the last couple of decades, catalytic converters (CC) have become a standard part of the internal combustion engine exhaust systems. Besides reducing toxic components in exhaust gases, catalytic converters can have a certain effect on the acoustic performance of the exhaust system. In this paper the sound transmission and attenuation in the catalytic converters has been investigated. A catalytic converter is known to have two distinct acoustic effects: the reactive effect originating from the acoustic wave reflections caused by cross-sectional area changes within the unit and the resistive effect which results in the acoustic wave dissipation caused by visco-thermal losses. The flow resistance in the narrow tubes in the catalytic converter element results in frequency dependent dissipative effects on the transmitted sound. An experimental investigation on engine catalytic converters treated as acoustic two-ports is carried out.
Technical Paper

Acoustic Study on Tubular Micro-perforated Flow Plug Sections for Vehicle Silencer’s Application

2022-06-15
2022-01-0933
A rapid publicity growth has led to an extensive application of micro-perforated (MP) acoustic elements for broadband sound absorption in the exhaust systems of the internal combustion engine. Most typically, the MPs are exposed to grazing flow conditions, studied thoroughly by various authors in the past decades and represented by adequate acoustic models by now. However, in certain exhaust system designs implemented in the fibreless silencers of modern ground vehicles, an alternative layout for the tubular flow duct MP elements - the flow plug condition has been proven to be useful. In this type of MP’s application, the propagating gas flow is entirely guided through the micro-perforated sections upstream and downstream of the rigid plug, typically increasing the flow resistivity and the viscous damping of the sound in duct. Acoustic studies on such type of MP’s operating condition are scarce.
Technical Paper

Reliability Study of Micro-Perforated Elements in Small Engine Silencer Application

2017-11-05
2017-32-0075
Since the introduction of microperforated (MP) sound absorption elements more than 40 years ago many variations of noise control devices from room acoustics to induct applications have been manufactured based on this technology. It has been demonstrated that micro-perforated elements can provide adequate IC-engine gas exchange noise attenuation. Several exhaust and inlet system silencers incorporating micro-perforated elements have been presented during the past 15 years for engine applications, encouraging the replacement of the typical fibrous materials and aiming several advantages including cleaner environment. The acoustical characteristics of the MP elements, have been studied thoroughly by several authors and good analytical models exist to predict the attenuation performance of those elements. However, almost no published information can be found regarding the reliability of the MP elements utilized in harsh engine exhaust system environment.
Technical Paper

Endurance of Micro-Perforated Elements in Unmanned Ground Vechicle's Small Diesel Engine Silencer Application

2020-01-24
2019-32-0533
As a suitable replacement for prevalent but environmentally hazardous fibrous materials used in exhaust system silencers, innovative micro-perforated (MP) elements have been progressively implemented for internal combustion engine noise control during the past decades. Although MP elements are already massproduced for IC engine noise control, surprisingly few scientific publications can still be found on the endurance of these MP elements. Recently the reliability of MP element was studied by the authors for a small four-stroke petrol engine silencer application. The results clearly demonstrated that the performance of the micro-perforated elements is influenced by the contamination of residual combustion products of the exhaust gas. In this paper the endurance of MP element tested in small industrial diesel engine application of a novel unmanned ground vehicle (UGV) has been treated.
X