Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Technique of ECU Circuit Design Management for Automotive Ethernet

2017-03-28
2017-01-0021
In recent years, the demand for high-speed/high-bandwidth communication for in-vehicle networks has been increasing. This is because the usage of high-resolution screens and high-performance rear seat entertainment (RSE) systems is expanding. Additionally, it is also due to the higher number of advanced driver assistance systems (ADAS) and the future introduction of autonomous driving systems. High-volume data such as high definition sensor images or obstacle information is necessary to realize these systems. Consequently, automotive Ethernet, which meets the requirements for high-speed/high-bandwidth communication, is attracting a lot of attention. The application of automotive Ethernet to in-vehicle networks requires that technology developments satisfy EMC performance requirements. In-vehicle EMC requirements consist of two parts: emission and immunity. The emission requirement is to restrict the electromagnetic noise emitted from vehicle.
Technical Paper

Design Tool and Software Platform for Time-Triggered Network Systems

2006-10-16
2006-21-0041
This paper describes a design tool and a software platform for FlexRay systems that are investigated in Nagoya University and are proposed to JasPar. The design tool reads the specification of a system as a task graph that consists of a set of tasks and messages among them. The design tool, then, allocates the tasks to ECUs and schedules the messages on a FlexRay network. The software platform consists of a middleware called time-trigger module (TTM) which dispatches time-triggered tasks, a communication middleware for a time-triggered network (TT-COM), a network management middleware for FlexRay (FlexRay-NM), and a device driver for FlexRay controller.
X