Refine Your Search

Search Results

Viewing 1 to 3 of 3
Standard

Light Vehicle Dry Stopping Distance

2010-05-25
HISTORICAL
J2909_201005
This document establishes best practices to measure vehicle stopping distance on dry asphalt in a straight path of travel intended for the purpose of publishing stopping distance by manufacturers and media organizations. It is recommended that the test method within be adopted for all vehicles less than 10 000 lb (4536 kg) GVWR. This procedure is typically used with initial speeds of 100 km/h and 60 mph, but other speeds may be used.
Standard

Light Vehicle Dry & Wet Stopping Distance Test Procedure

2018-06-12
CURRENT
J2909_201806
This document establishes best practices to measure vehicle stopping distance on dry or wet asphalt in a straight path of travel intended for the purpose of publishing stopping distance by manufacturers and media organizations for vehicles with original equipment tires. It is recommended that the test method within be adopted for all vehicles less than 4536 kg (10000 pounds) GVWR. This procedure is typically used with initial speeds of 100 km/h and 60 mph, but other speeds may be used. Since tires play a significant role in stopping distance, this procedure covers tire types typically used as original equipment on new vehicles including all-season, summer, and all-terrain tires. This document may serve as a procedural guideline for all tire types, but the surface temperature correction formulas in this procedure were developed using all-season tires and may not be applicable to other tire types.
Standard

TESTING MACHINES FOR MEASURING THE UNIFORMITY OF PASSENGER CAR TIRES

1969-01-01
HISTORICAL
J332_196901
In recent years the comfort and fatigue of passengers in vehicles has become a major engineering consideration. Among the many factors involved are vibratory and auditory disturbances. Tires participate, among other elements of the vehicle, in exciting vibrations and noises. Furthermore, tires also may generate forces leading to lateral drift of the vehicle. This recommended practice describes the design requirements of equipment for evaluating some of the characteristic excitations of passenger tires causing disturbances in vehicles. The kinds of excitations treated result from nonuniformities in the structure of the tire and have their effect when a vehicle bearing the tire travels on a smooth road. This recommended practice also describes some broad aspects of the use of the equipment and lists precautionary measures that have arisen out of current experience.
X