Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A New Combustion Chamber Concept for Low Emissions in Small DI Diesel Engines

2001-10-01
2001-01-3263
This study proposes a new combustion chamber concept for small DI diesel engines. Reduction of fuel adhering to the cavity wall, improvements in mixture formation, and an optimum distribution of mixture inside and outside the cavity are the main characteristics of the combustion chamber. The spray formation and it's distribution inside and outside the combustion chamber was investigated photographically in a small DI diesel engine with transparent cylinder and piston. Optimization of the fuel spray distribution inside and outside the cavity was attempted by changing the shape of the cavity entrance and the location where spray impinges on the lip. In addition improvements in the mixture formation of the impinging spray and reductions in the fuel adhering to the cavity wall were attempted by introducing a small step on the cavity side wall. The results were confirmed by analyzing the combustion and emission in an actual DI diesel engine.
Technical Paper

Effects of Injection Timing and Fuel Properties on Exhaust Odor in DI Diesel Engines

1999-05-03
1999-01-1531
Exhaust odor of DI diesel engines is worse than that of gasoline engines, especially at low temperatures and at idling. As the number of passenger cars with DI diesel engines is increasing worldwide because of their low CO2 emissions, odor reduction research of DI diesel engines is important. Incomplete combustion is a major cause of exhaust odor. Generally, odor worsens due to overleaning of the mixture in the cylinder and due to fuel adhering on the combustion chamber walls. To confirm this, the influences of different engine running conditions and fuel properties were investigated. The reason for the changes in exhaust odor with injection timing is evaluated by considerations of optimum positions of the maximum heat release. With n-heptane, a low boiling point fuel, odorous emissions increase because of overleaning of the mixture.
X