Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Estimation of the Total Fuel Economy and CO2 Emission from Vehicles at the Center of Local City

2001-11-12
2001-01-3759
Improvements in the fuel economy of passenger cars and trucks contribute directly to CO2 reductions. Recently low fuel consumption cars are being developed, however most cars are still old types. This study estimates the effect of new engine types, light weight cars, kinds of fuel, and running conditions on fuel economy and CO2 emissions with a new calculation method of fuel consumption. In this calculation method the fuel consumption and CO2 emissions are easily calculated from the indicated thermal efficiency and friction mean effective pressure for different engine types and sizes. By this method the overall fuel consumption and CO2 emissions from small passenger cars to heavy duty trucks were estimated for roads through the center of a small city. As a result, the influence of new type engines, light weight cars, fuel properties and driving patterns on fuel economy and CO2 was made clear.
Technical Paper

Influence of Engine Parameters on Exhaust Odor in DI Diesel Engines

2000-06-19
2000-01-1935
Direct injection diesel engines emit a far more disagreeable exhaust odor at idling than gasoline engines, and with increasing numbers of DI diesel engines in passenger cars, it is important to promote the odor reduction research. High pressure injection in DI diesel engines promotes combustion and decreases particulate matter (PM) emissions, but injection pressures at idling and warm up are limited to 30∼40 MPa considering engine noise and vibration. In this pressure range, a part of the fuel adheres on the relatively cool combustion chamber walls and causes incomplete combustion, producing higher concentration of unburned HC and intermediate combustion components (aldehydes, other oxygenated compounds, etc.) with objectionable exhaust odors. To reduce the exhaust odor, oxidation catalysts are effective, but catalyst activity is poor at idling, when the exhaust gas temperature is low (about 100°C).
Technical Paper

Effects of High Pressure Injection and Oxidation Catalyst on Exhaust Odor in DI Diesel Engines

2000-06-19
2000-01-1936
This study investigated the effect of high pressure injection and an oxidation catalyst on the exhaust odor of DI diesel engines. At idling an injection pressure of 60∼80 MPa resulted in the minimum exhaust odor, with the least aldehyde and minimum total hydrocarbon (THC). This is because of decreases in fuel adhering to the combustion chamber walls due to the shortest ignition delay at this pressure range. However, above 60 MPa there is no further shortening of the ignition delay and overleaning of the local mixture dominates at injection pressures above 100 MPa, where the exhaust odor increases again. The odor reduction at the optimum injection pressure and injection timing is not significant, and further experiments with an oxidation catalyst were performed. The oxidation catalyst was found less effective to reduce exhaust odor at long idling where the maximum catalyst temperature is only about 120°C.
Technical Paper

Effect of Reverse Squish on Fuel Spray Behavior in a Small DI Diesel Engine under High Pressure Injection and High Charging Condition

2000-10-16
2000-01-2786
Modern small DI diesel engines are operated at high loads and high speeds. In these engines the spray spreading on the cavity walls during the main combustion is kept approximately constant at all engine speeds to optimize the air utilization. However, spray spreading on the wall during the early and late part of combustion changes with engine speed due to the changes in air motion. At the end of impingement much of the spray moves outside the cavity due to a strong reverse squish when the injection timing is set near TDC. This causes incomplete combustion of fuel and increase emissions of HC and soot. Therefore, the study of the behavior of spray affected by the reverse squish is very important. In this study the fuel spray development under high injection pressure and high gas charging pressure was investigated photographically in a small direct injection diesel engine with a common rail injection system.
X