Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Turbulence in Intake Port of MPI Engine on Fuel Transport Phenomena and Nonuniformity of Fuel/Air Mixing in Cylinder

1990-02-01
900162
Three zone mixture preparation model, assuming that fuel and air are distributed in three separate zones, fuel air and mixture zone, was proposed. Air Utilization Efficiency derived from the model was used to evaluate the mixing nonuniformity. Effect of the large scale nonisotropic turbulence downstream of the dimple or edge in the intake port of MPI engine on the convective mass transfer from fuel film was clarified by the proposed nondimensional index, Local Sherwood Number. It was found that when the fuel is injected toward the wall where large scale turbulence exists, almost all of the fuel is seeded in the air passing the region at the beginning of the intake process, resulting in the time-resolved nonuniformity of the mixture strength at the intake valve. Using the Air Utilization Efficiency, it was elucidated that time-resolved mixing nonuniformity at intake valves induces spatially nonuniform fuel/air distribution in the cylinder.
Technical Paper

A Knock Anticipating Strategy Basing on the Real-Time Combustion Mode Analysis

1989-02-01
890882
Although whether the cylinder gas oscillation is provoked by end-gas autoignition in a certain cycle or not is a irregular phenomenon, autoignition itself takes place in almost all of the cycles in the knocking condition. Detection of the autoignition makes it possible to realize a knock anticipating strategy. Using the decay rate of the effective heat release rate as the index, delayed autoignition with small auto-ignited mass fraction can be detected. Applying this index for the analysis of the autoignition in the acceleration process, it was clarified that heavy autoignition immediately after the acceleration caused by the selective induction of the low boiling point gasoline components into the cylinder is followed by the period where the low combustion chamber wall temperature reduces the autoignited mass fraction and suppresses the cylinder gas oscillation.
Technical Paper

Heat Release Rate and Cylinder Gas Pressure Oscillation in Low and High Speed Knock

2015-09-01
2015-01-1880
One of the authors has proposed to use the decay rate of EHRR, the effective heat release rate, d2Q/dθ2 as an index for the rapid local combustion [1]. In this study, EHRR profiles and the cylinder gas pressure oscillations of the low and high speed knock are analyzed by using this index. A delayed rapid local combustion, such as an autoignition with small burned mass fraction can be detected. In the cases of the low speed knock, it has been agreed that a rapid local combustion is an autoignition. Although whether the cylinder gas oscillation is provoked by an auto ignition in a certain cycle or not is an irregular phenomenon, the auto ignition takes place in almost all of the cycles in the knocking condition. Mixture mass fraction burned by an auto ignition is large. A small auto ignition may induce a secondary auto ignition, in many cases, mass burned by the secondary auto ignition is extremely large.
X