Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Study of High Power Output Diesel Engine with Low Peak Cylinder Pressure

2010-04-12
2010-01-1107
This study examined a high-speed, high-powered diesel engine featuring a pent-roof combustion chamber and straight ports, with the objective of improving the specific power of the engine while minimizing any increase in the maximum cylinder pressure (Pmax). The market and contemporary society expect improvements in the driving performance of diesel-powered automobiles, and increased specific power so that engine displacement can be reduced, which will lessen CO2 emissions. When specific power is increased through conventional methods accompanied with a considerable increase in Pmax, the engine weight is increased and friction worsens. Therefore, the authors examined new technologies that would allow to minimize any increase in Pmax by raising the rated speed from the 4000 rpm of the baseline engine to 5000 rpm, while maintaining the BMEP of the baseline engine.
Technical Paper

Study on Euro IV Combustion Technologies for Direct Injection Diesel Engine

2004-03-08
2004-01-0113
It is a generally accepted fact that the advantage of diesel engines over their gasoline-powered counterparts is superior fuel consumption. However, attempts to use diesel engines as car powerplants have been hampered by the associated increase in toxic emissions. Research was carried out with the objectives of achieving the lowest fuel consumption for a diesel-powered passenger vehicle in the 1,590kg equivalent inertia weight class while also meeting the 2005 European diesel exhaust emissions standards (EURO IV). This paper starts with a description of the experiments on combustion and the results of the simulations and experiments using a visualization apparatus, followed by a description of the fuel consumption, emissions and power performance of the engine when fitted in an actual vehicle. To begin with, the relationship between engine displacement and fuel consumption was investigated.
Technical Paper

Study on Homogeneous Lean Charge Spark Ignition Combustion

2013-10-14
2013-01-2562
In practical lean burn engines used to date, the use of a stratified air-fuel configuration, with a comparatively rich mixture in the vicinity of the spark plugs, has resulted in the stable combustion of an overall lean mixture. However, because a comparatively rich mixture is burned during the first half of combustion, NOx emissions are not reduced sufficiently. This research focused on a form of lean burn with homogeneous premixture that would be able to balance low NOx emissions with combustion controllability. It is widely known that homogeneous lean premixed gas has poor flame propagation characteristics. To determine the dominant cause of this, this study investigated the combustion properties of a single-cylinder engine while changing the compression ratio and intake temperature. As a result, the primary cause of combustion fluctuation, the abnormal cycle has a low TDC temperature compared to that of other cycles.
Technical Paper

PCCI Operation with Fuel Injection Timing Set Close to TDC

2006-04-03
2006-01-0920
In order to further reduce exhaust gas emissions, an investigation was carried out with premixed charge compression ignition (PCCI) combustion mode using conventional diesel fuel. Past research was carried out with early injection into shallow-dish piston bowl, combined with a narrow nozzle angle setting. Early injection significantly reduced NOX emissions, but some of the fuel spray adhered to the piston bowl surface creating a fuel wall-film which was a major cause in increasing soot, HC and CO emissions and fuel consumption [1]. As a possible solution to this issue, PCCI combustion mode operation on a direct injection diesel engine was investigated with fuel injection timing set close to top dead center (TDC). As a result, regardless of the fuel injection timing, increasing EGR reduced NOx emissions. In terms of fuel consumption, soot, HC and CO, however, fuel injection timing close to TDC was superior to earlier injection, due to the reduction in the fuel wall-film formation.
Technical Paper

PCCI Operation with Early Injection of Conventional Diesel Fuel

2005-04-11
2005-01-0378
In order to further reduce exhaust gas emissions, an investigation was carried out concerning premixed charge compression ignition (PCCI) combustion, which is achieved by the early injection of conventional diesel fuel to the combustion chamber. The engine used for the experiments was a single cylinder version of a modern passenger car type common rail engine with a displacement of 550(cm3). An injector with a narrower corn angle was used to prevent interaction of the spray and the cylinder liner. Also, the compression ratio was decreased in order to avoid an excessively advanced ignition situation. Additionally, a large degree of cooled exhaust gas recirculation (EGR) was applied. These measures led to a significantly reduction in NOX emissions. However, a fuel wall-film, which was formed on the surface of the piston bowl wall, caused increases in soot, HC and CO emissions.
X