Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Controlling of Heating Rates for Safe Regeneration of Ceramic Honeycomb Diesel Particulate Filter

1988-02-01
880002
Thermal shock failures have been considered as one of the most significant issues for wall flow type ceramic diesel particulate filters during their regeneration. This paper describes the experiments which were conducted in order to study effects of heating rates of the accumulated diesel particulate on the thermal shock failure of the filters using an NGK soot generator. The results showed favorable heating rates of the particulate in terms of the amounts of the accumulated particulate up to which the filters are safely regenerated.
Technical Paper

Effect of Cell Structure on Regeneration Failure of Ceramic Honeycomb Diesel Particulate Filter

1987-02-01
870010
In applying ceramic honeycomb wall flow type filters to the after-treatment systems of diesel particulate from engines, the melting and thermal shock failures of ceramic diesel particulate filters (DPF) have been considered as one of the most significant issues during regeneration. This paper gives the results of experiments on the effects of cell structure i.e., wall thickness and cell density, on the melting and thermal shock regeneration failure of DPF and proposes an optimized cell structure for DPF in terms of the regeneration failure and the pressure drop which is also considered to be one of the especially important issues in fuel economy for heavy duty vehicle application.
X