Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study on the Application of a Reduced Chemical Reaction Model to Motored Engines for Heat Release Prediction

1992-10-01
922328
We investigated the ability of a reduced chemical kinetic model of 18 reactions and 13 active species to predict the heat release for a blend of primary reference fuels with octane rating 63 in a motored research engine. Given the initial fuel-air mixture concentration and temperature, the chemical kinetic model is used to predict temperature, heat release and species concentrations as a function of time or crank angle by integrating the coupled rate and energy equations. For comparison, we independently calculated heat release from measured pressure data using a standard thermodynamic model.
Technical Paper

The Effects of Methanol and Ethanol on the Oxidation of a Primary Reference Fuel Blend in a Motored Engine

1995-02-01
950682
This experimental study was conducted in a motored research engine to investigate the effect of blending methanol and ethanol on hydrocarbon oxidation and autoignition. An 87 octane mixture of primary reference fuels, 87 PRF, was blended with small percentages of the alcohols to yield a constant gravimetric oxygen percentage in the fuel. The stoichiometric fuel mixtures and neat methanol and ethanol were tested in a modified single-cylinder engine at a compression ratio of 8.2. Supercharging and heating of the intake charge were used to control reactivity. The inlet gas temperature was increased from 325 K to the point of autoignition or the maximum achievable temperature of 500 K. Exhaust carbon monoxide levels and in-cylinder pressure histories were monitored in order to determine and quantify reactivity.
Technical Paper

Development of a Reduced Chemical Kinetic Model for Prediction of Preignition Reactivity and Autoignition of Primary Reference Fuels

1996-02-01
960498
A reduced chemical kinetic model has been developed for the prediction of major oxidation behavior of primary reference fuels (PRF's) in a motored engine, including ignition delay, preignition heat release, fuel consumption, CO formation and production of other species classes. This model consists of 29 reactions with 20 active species and was tuned to be applicable for the neat PRF's, 87 PRF and 63 PRF, and at various engine conditions. At the motored engine condition where detailed species data were generated, the model reproduces the ignition delay and the preignition heat release quite well (to within 15%). Fuel consumption and CO formation predictions differed from experiments by at most 25% for all of the four fuels. Predictions for other species classes generally agreed with experiments. As inlet temperature was varied, the experimentally observed negative temperature coefficient (NTC) behavior of iso-octane and 87 PRF was reproduced by the model.
X