Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Use of a Water/Lube Oil Heat Exchanger and Enhanced Cooling Water Heating to Increase Water and Lube Oil Heating Rates in Passenger Cars for Reduced Fuel Consumption and CO2 Emissions During Cold Start.

2007-07-23
2007-01-2067
Lubricating oil takes all of the NEDC test cycle time to reach 90°C. Hence, this gives high friction losses throughout the test cycle, which leads to a significant increase in the fuel consumption. In real world driving, particularly in congested traffic, it is shown that lube oil warm-up is even slower than in the NEDC. Euro 1, 2 and 4 Ford Mondeo water and oil warm up rates in real world urban driving were determined and shown to be comparable with the results of Kunze et al. (2) for a BMW on the NEDC. This paper explores the use of forced convective heat exchange between the cooling water and the lube oil during the warm-up period. A technique of a step warm-up of the engine at 32 Nm at 2000 rpm (35% of peak power) was used and the engine lube oil and water temperature monitored. It was shown that the heat exchanger results in an increase in lube oil temperature by 4°C, which increased to 10°C if enhanced heat transfer to the water was used from an exhaust port heat exchanger.
Technical Paper

Study of thermal characteristics, fuel consumption and emissions during cold start using an on-board measuring method for SI car real world urban driving

2007-07-23
2007-01-2065
Exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. The test vehicle was a EURO 2 emission compliant SI car equipped with real time fuel consumption measurement and temperature measurement along the exhaust pipe across the catalyst allowing the matching of thermal characteristics to emission profiles and monitor fuel consumption. The temperature profile indicated that the light-off of the catalyst took about 150∼200 seconds. The warm up of the lubricating oil and coolant water required a longer time than the catalyst did. The impact of ambient temperatures on lubricating oil and coolant water warm ups was greater than that on the light-off of the catalyst. The heat loss and energy balance were calculated during the whole cycle period. The influence of cold start on fuel consumption was investigated.
Technical Paper

Comparisons of the Exhaust Emissions for Different Generations of SI Cars under Real World Urban Driving Conditions

2008-04-14
2008-01-0754
EURO 1, 2 3 and 4 SI (Spark Ignition) Ford Mondeo passenger cars were compared for their real world cold start emissions using an on-board FTIR (Fourier Transform Infrared) exhaust emission measurement system. The FTIR system can measure up to 65 species including both regulated and non-regulated exhaust pollutants at a rate of 0.5 Hz. The driving parameters such as speed, fuel consumption and air/fuel ratio were logged. The coolant water, lube oil and exhaust temperatures were also recorded. A typical urban driving cycle including a loop and a section of straight road was used for the comparison test as it was similar to the legislative ECE15 urban driving cycle. Exhaust emissions were calculated for the whole journey average and compared to EU legislation. The cold start transient emissions were also investigated as a separate parameter and this was where there was the greatest difference between the four vehicles.
Technical Paper

Analysis of Various Driving Parameters and Emissions for Passenger Cars Driven With and Without Stops at Intersections under Different Test Cycles

2012-04-16
2012-01-0880
Different driving test cycles, the Leeds-West Park (LWP) loop and the Leeds-High Park (LHP) or HPL-A and B (Leeds-Hyde Park Loop-A or B, hereafter referred as HPL-A or B cycle) loop were selected for this urban intersection research and results are presented in this study. Different emissions-compliant petrol passenger cars (EURO 1, 2, 3 and 4) were compared for their real-world emissions. A reasonable distance of steady state speed was needed and for the analysis made in this paper were chosen vehicle speeds at ~20, ~30 and ~40 km/h. Specific spot of periods of driving at the speeds mentioned above were identified, then the starting and ending point was found and the total emissions in g for that period divided by the distance was calculated. A typical urban driving cycle including a loop and a section of straight road was used for the comparison test as it was similar to the legislative ECE15 urban driving cycle.
Technical Paper

Impact of Ambient Temperatures on Exhaust Thermal Characteristics during Cold Start for Real World SI Car Urban Driving Tests

2005-10-24
2005-01-3896
Thermal characteristics of SI engine exhaust during cold start and warm up period were investigated for different ambient temperatures (-2 to 32 °C). A Euro 1 emission compliance SI car was tested using a real world urban driving cycle to represent typical city driving patterns and simulate ECE15 urban driving cycle. The test car was equipped with 27 thermocouples along the engine and exhaust pipes so as to measure metal and exhaust gas temperatures along the engine, exhaust and catalyst. The characteristics of thermal properties of engine, exhaust system and catalyst were studied as a function of warm up time and ambient temperature. The temperature and time of the light-off of catalyst were investigated so as to evaluate the effect of thermal properties of the catalyst on emissions. The results show that the coolant water reached the full warm up about 5 minutes in summer and 9 minutes in winter after a cold start.
Technical Paper

Oil Quality in Diesel Engines With On Line Oil Cleaning Using a Heated Lubricating Oil Recycler

1999-03-01
1999-01-1139
SYNOPSIS A method of cleaning the oil on line was investigated using a bypass fine particulate filter followed by an infra red heater to remove water and light diesel fractions in the oil. This was tested on a range of on road vehicles and a Ford 1.8 litre IDI passenger car engine on a test bed. Comparison was made with the oil quality on the same vehicles and engines without the on-line recycler. Test times were from 200 to 1500 hours of oil ageing and some of the tests showed that the oil quality was still good after 4 times the normal oil life. The results showed that the on line oil recycler cleaning system reduced the rate of fall of the TBN and rate of increase of the TAN. There was a very significant reduction in the soot in oil and the fuel dilution. There was also a consistent reduction in all the wear metals apart from copper and a decrease in the rate of reduction of oil additives. There was also measured on the Ford IDI engine a 5% reduced fuel consumption.
Technical Paper

Understanding Catalyst Overheating Protection (COP) as a Source of Post-TWC Ammonia Emissions from Petrol Vehicle

2022-08-30
2022-01-1032
TWC exposure to extreme temperature could result in irreversible damage or thermal failure. Thus, a strategy embedded in the engine control unit (ECU) called catalyst overheating protection (COP) will be activated to prevent TWC overheating. When COP is activated, the command air-fuel ratio will be enriched to cool the catalyst monolith down. Fuel enrichment has been proven a main prerequisite for ammonia formation in hot TWCs as a by-product of NOx reduction. Hence, COP events could theoretically be a source of post-catalyst ammonia from petrol vehicles, but this theory is yet to be confirmed in published literature. This paper validated this hypothesis using a self-programmed chassis-level test. The speed of the test vehicle was set to constant while the TWC temperature was raised stepwise until a COP event was activated.
X