Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Advances in Tribological Design of Poly(alkyl methacrylate) Viscosity Index Improvers

2011-08-30
2011-01-2123
Fuel economy has become the dominant criterion in the design of new automobiles. The globally enacted targets for fleet average emissions pose true challenges to automobile manufacturers. Increasing fuel economy requires enhancements both in hardware as well as in lubricant performance. As a key component of the lubricant, poly(alkyl methacrylate) PAMA viscosity index improvers have been identified as crucial design element due to their multiple modes of action. In their original application, they serve the well-known mechanism of polymer coil expansion at high temperatures and collapse at low temperatures. They help to flatten the viscosity/temperature relationship of the lubricant and allow for reduced low temperature viscosities and reduced internal friction, which directly translates into fuel economy. In addition to this bulk application, interfacial tribological phenomena contribute significantly to efficiency and fuel economy.
Technical Paper

Film-Forming Properties of Zinc-Based and Ashless Antiwear Additives

2000-06-19
2000-01-2030
A progressive reduction in the permitted level of phosphorus in lubricating oils, coupled with concern to maintain engine and transmission durability, means that it is becoming increasingly important to understand the detailed mechanism of antiwear additive behavior. This paper describes a new experimental technique, which is able to measure both the thickness and distribution of antiwear additive films in rolling/sliding contacts. This enables the kinetics of antiwear film build-up to be investigated and the influence of the reaction film on friction and wear to be monitored. In the current paper, this technique is used to compare the film-forming behavior of ash-containing and ashless antiwear additives.
X