Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

CVT Ratio Control Algorithm by Considering Powertrain Response Lag

2004-03-08
2004-01-1636
A CVT ratio control algorithm is proposed to improve the engine performance by considering the powertrain response lag. In the CVT powertrain, there exists a response lag, which results from the throttle response, engine torque dynamics, CVT filling time, CVT shift dynamics, and the drive shaft dynamics including the tire. This response lag causes the deviation of the engine operation from the optimal operation line for the minimum fuel consumption. In the CVT ratio control algorithm suggested in this paper, the desired CVT speed ratio is modified from the vehicle velocity, which is estimated after the time delay due to the powertrain response lag. In addition, the acceleration map is constructed to estimate the vehicle acceleration from the throttle pedal position and the CVT ratio. Using the CVT ratio control algorithm and the acceleration map, vehicle performance simulations and experiments are performed to evaluate the engine performance and fuel economy.
Technical Paper

Improvements of Thermal and Combustion Efficiencies by Modifying a Piston Geometry in a Diesel/Natural Gas RCCI Engine

2023-04-11
2023-01-0280
To meet the target of the CO2 regulations, it is mandatory to replace high-carbon fossil fuels with low-carbon fuels. Diesel/Natural Gas (NG) reactivity-controlled compression ignition (RCCI) can reduce CO2 emission, which stratifies two types of fuels with different reactivity. And also, RCCI produces less NOx and particulate matter emissions by reducing the in-cylinder temperature. However, RCCI must still be enhanced in terms of the thermal and combustion efficiencies at low and medium loads. In this work, a modified piston geometry was applied to improve the RCCI combustion. The piston geometry was designed to minimize heat loss and reduce flame quenching in an RCCI engine. Experiments were conducted using a single-cylinder engine with a displacement volume of 1,000 cc. Diesel was directly injected into the cylinder, and NG was fed through the intake port.
X