Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Penetration Calibration and Verification for the Solid Particle Counting System with Polydisperse and Monodisperse Particles

2008-04-14
2008-01-1178
Monodisperse and polydisperse Sodium Chloride (NaCl) particles were used to calibrate the solid particle penetration for the Volatile Particle Remover (VPR) in a Horiba prototype Solid Particle Counting System (SPCS). Prior to the calibration, dilution ratios on the SPCS are verified carefully with a flame ionization analyzer (FIA). Size distributions for polydisperse aerosols upstream and downstream of the Volatile Particle Remover (VPR) were measured with a Scanning Mobility Particle Sizer (SMPS). It is found that overall penetrations for polydisperse aerosols are larger than 95%. Geometric standard deviations from the raw and the diluted by the VPR are within ±1.5% difference. Thus, shapes of size distributions aren't changed after dilution. Geometric mean diameters shift a little, on average ±5% after dilution. Therefore, the VPR doesn't change the aerosol characteristics after the aerosol is diluted and heated up to 320 °C.
Technical Paper

Is There a Better Curve Fit for NDIR Calibration Data than 4th Order Polynomials?

2003-05-19
2003-01-2021
This paper presents a technique for examining “Goodness of Fit” of polynomial least square curves using “errorless” data. (The errors in “real world” data tend to mask a polynomial curve's lack of fit). A method of assessing the “quality” of real data before attempting to fit a curve to the data is also presented. If data “quality” proves satisfactory, a cubic spline curve can be generated which provides a much better fit to the data than can ever be attained using polynomial curves.
Technical Paper

Influencing Factors on Calibration of Solid Particle Number Counting System for European PN Emission Regulations

2011-08-30
2011-01-2054
The European Union has announced the next term emission regulations for light-duty vehicles which include particle number (PN) emission standards. The protocol for PN counting for the regulation is described in UNECE Regulation No.83. The PN counting system required for this regulation should consist of a Volatile Particle Remover (VPR) and a Condensation Particle Counter (CPC). The regulation also requires calibration of the VPR's Particle Concentration Reduction Factor (PCRF) periodically. Since the PCRF is directly used in the calculation of PN emission, an improper calibration of the factor can cause a significant error of PN emission result. This paper investigates propriety to use NaCl particles generated by atomizing method in the PCRF calibration as reference particles. As a result, it is shown that the NaCl particles can be used in PCRF calibration because of the sufficient stability when appropriate thermal treatment is applied.
X