Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Application of Predictive Noise and Vibration Analysis to the Development of a New-Generation Lightweight 3-Liter V6 Nissan Engine

1994-03-01
940993
The target performance of a new engine has to be obtained under various restrictions such as cost and weihgt. It is particularly important to predict the engine noise and vibration performance at an early stage. For this purpose the analytical methods have been developed, which include the prediction of the absolute noise and vibration level by inputting a given exciting force into the model. These methods were applied to the development of the new engine. As a result, the characteristics of an aluminum cylinder block were used effectively to achieve a new lightweight V6 engine with low noise and vibration levels.
Technical Paper

An Application of Structural-Acoustic Coupling Analysis to Boom Noise

1989-09-01
891996
Reduction of interior noise is an important factor in vehicle design and many experimental and theoretical studies have been carried out to find effective noise reduction techniques. Previously, we developed a Structural-Acoustic Uncoupled Program, ACOUST3, as a technique for estimating low-frequency noise in the vehicle interior. In the present work, ACOUST3 has been extended to construct an acoustic coupling analysis system, ASCA, which is used to calculate low-frequency noise, such as boom noise. In order to calculate low-frequency noise accurately, it is necessary to represent the vibration characteristics of the trimmed body as closely as possible. To do this, we built a trimmed body model, incorporating 22 trim parts, based on vibration test results, and found that the calculated results obtained with the model correlated well with experimental data.
X