Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Synthesis of a Vehicle Suspension with Constrained Lateral Space using a Roll-plane Kineto-dynamic Model

2010-04-12
2010-01-0641
The larger chassis space requirements of hybrid vehicles necessitates considerations of the suspension synthesis with limited lateral space, which may involve complex compromises among performance measures related to vehicle ride and handling. This study investigates the influences of suspension linkage geometry on the kinematic and dynamic responses of the vehicle including the wheel load in order to facilitate synthesis of suspension with constrained lateral space. A kineto-dynamic half-car model is formulated incorporating double wishbone suspensions with tire compliance, although the results are limited to kinematic responses alone. An optimal synthesis of the suspension is presented to attain a compromise among the different kinematic performance measures with considerations of lateral space constraints. In the kineto-dynamic model, the struts comprising linear springs and viscous dampers are introduced as force elements.
Technical Paper

Investigation of a Limited-State Active Suspension for Articulated Heavy Vehicles

1995-11-01
952590
An articulated vehicle suspension comprising a parallel combination of passive energy restoring and dissipative elements and a feedback controlled force generator is analyzed using H2 control synthesis. The active suspension schemes based on limited-state measurements are formulated to minimize a performance measure comprising ride quality, cargo safety, suspension and tire dynamic deflections, and power requirements. The ride quality and the dynamic wheel load performance characteristics of these suspension schemes are compared to those of a vehicle with an ideal active suspension and an “optimum” passive suspension to demonstrate the performance potentials of the proposed limited-measurement-based suspension schemes.
Technical Paper

Influence of Suspension Kinematics and Damper Asymmetry on the Dynamic Responses of a Vehicle under Bump and Pothole Excitations

2010-04-12
2010-01-1135
Automotive suspensions invariably exhibit asymmetric damping properties in compression and rebound, which is partly attributed to asymmetric damping and in-part to the suspension linkage kinematics together with tire lateral compliance. Although automotive suspensions have invariably employed asymmetric damping, the design guidelines and particular rationale for such asymmetry has not been explicitly defined. The influences of damper asymmetry together with the suspension kinematics and tire lateral compliance on the dynamic responses of a vehicle are investigated analytically under bump and pothole excitations, and the results are interpreted in view of potential design guidance. A quarter-car kineto-dynamic model of the road vehicle employing a double wishbone type suspension comprising a strut with linear spring and multiphase asymmetric damper is formulated for the analyses.
X