Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Flamelet Structure in Diesel Engines under Lean and Stoichiometric Operating Conditions

2008-04-14
2008-01-1362
Stoichiometric operation is one possible approach for reducing in-cylinder pollutant formation in diesel engines. High levels of exhaust gas recirculation (EGR) combined with stoichiometric operation may be employed to decrease soot and NO emissions from the engine. In this work, in-cylinder conditions are estimated for a diesel engine near top dead center, prior to the start of injection, for different levels of EGR. Two modes of engine operation are considered: the first is operation with excess air such that the overall equivalence ratio is 0.5, and the second is stoichiometric operation. These conditions are employed in separate studies to understand the influence of both EGR and mode of operation on pollutant formation and ignition. N-heptane is used as a representative fuel. Its oxidation chemistry is modeled using a reduced 159-species, 1540-step mechanism. A kinetics-based soot model and NO sub-mechanism are employed to investigate pollutant formation.
Technical Paper

Three-Dimensional Modeling of Soot and NO in a Direct-injection Diesel Engine

1995-02-01
950608
Results of comparisons of computed and measured soot and NO in a direct-injection Diesel engine are presented. The computations are carried out using a three-dimensional model for flows, sprays and combustion in Diesel engines. Autoignition of the Diesel spray is modeled using an equation for a progress variable which measures the local and instantaneous tendency of the fuel to autoignite. High temperature chemistry is modeled using a local chemical equilibrium model coupled to a combination of laminar kinetic and turbulent characteristic times. Soot formation is kinetically controlled and soot oxidation is represented by a model which has a combination of laminar kinetic and turbulent mixing times. Soot oxidation appears to be controlled near top-dead-center by mixing and by kinetics as the exhaust is approached. NO is modeled using the Zeldovich mechanism.
X