Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development and Testing of a Non-Expendable Contaminant Control System

1997-07-01
972433
The control of trace contaminants on the International Space Station (ISS) is carried out by a combination of activated carbon absorption and catalytic oxidation. The carbon bed absorbs most hydrocarbons, chloro and chlorofluorocarbons (CHCs and CFCs) while the catalytic oxidizer removes compounds such as methane, ethylene, ethane, and carbon monoxide that cannot be absorbed by the charcoal bed. Unfortunately, the Space Station catalyst of 0.5% palladium on alumina does not effectively oxidize CHCs and CFCs, and in fact is powerfully poisoned by them (Wright et al. 1996). Thus, even though the charcoal bed has little affinity for CFCs and CHCs, it must be sized to completely remove these compounds in order to protect the crew and prevent poisoning of the catalytic oxidizer. TDA Research Inc. (TDA), under contract to NASA-JSC, has designed, built, and tested an all-catalytic trace contaminant control system (TCCS) to be used in Phase III of the Early Human Testing Program.
Technical Paper

Diode Laser Based Formaldehyde Measurements in a Catalytic Trace Contaminant Control System

2000-07-10
2000-01-2303
The development of a portable diode laser based gas sensor and its application to sensitive, selective, on-line monitoring of formaldehyde concentrations present in a catalytic Trace Contaminant Control System (TCCS) in a 5-day period in August 1999 is reported. The TCCS was originally developed for the Lunar-Mars Life Support Test program in 1996-1997 at NASA-JSC. The motivation for monitoring H2CO levels in a sealed human rated environment is that its presence can cause headaches, throat and ear irritation at low concentrations (>100 ppb), and more serious adverse effects at higher concentration levels. Consequently, NASA has established a spacecraft maximum allowable H2CO concentration of 40 ppb for crew exposure for a 7 to 180 days period [1].
X