Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Integration of Exhaust Gas Recirculation, Selective Catalytic Reduction, Diesel Particulate Filters, and Fuel-Borne Catalyst for NOx/PM Reduction

2000-06-19
2000-01-1933
Exhaust gas recirculation (EGR) has long been used in gasoline and light-duty diesel engines as a NOx reduction tool. Recently imposed emission regulations led several heavy-duty diesel engine manufacturers to adopt EGR as part of their strategy to reduce NOx. The effectiveness of this technology has been widely documented, with NOx reduction in the range of 40 to 50 percent having been recorded. An inevitable consequence of this strategy is an increase in particulate emission, especially if EGR was used in high engine load modes. Selective catalytic reduction (SCR), a method for NOx reduction, is widely used in stationary applications. There is growing interest and activity to apply it to mobile fleets equipped with heavy-duty diesel engines. Results of this work indicate that SCR has the potential to dramatically reduce NOx in diesel exhaust. Reductions greater than 70 percent were reported by several including the Institute's previous work (SAE Paper No. 1999-01-3564).
Technical Paper

Achieving Heavy-Duty Diesel NOx/PM Levels Below the EPA 2002 Standards--An Integrated Solution

2000-03-06
2000-01-0187
The diesel engine has long been the most energy efficient powerplant for transportation. Moreover, diesels emit extremely low levels of hydrocarbon and carbon monoxide that do not require post-combustion treatment to comply with current and projected standards. It is admittedly, however, difficult for diesel engines to simultaneously meet projected nitrogen oxides and particulate matter standards. Traditionally, measures aimed at reducing one of these two exhaust species have led to increasing the other. This physical characteristic, which is known as NOx/PM tradeoff, remains the subject of an intense research effort. Despite this challenge, there is significant evidence that heavy-duty highway engine manufacturers can achieve substantial emission reductions. Many development programs carried out over the last five years have yielded remarkable results in laboratory demonstrations.
Technical Paper

Investigations of NO2 in Legal Test Procedure for Diesel Passenger Cars

2015-09-06
2015-24-2510
As a result of increased use of catalytic exhaust aftertreatment systems of vehicles and the low-sulfur Diesel fuels there is an increasing share of nitrogen dioxide NO2 in the ambient air of several cities. This is in spite of lowering the summary nitric oxides NOx emissions from vehicles. NO2 is much more toxic than nitrogen monoxide NO and it will be specially considered in the next legal testing procedures. There are doubts about the accuracy of analyzing the reactive substances from diluted gas and this project has the objective to show how NO2 is changing as it travels down through the exhaust- and the CVS systems. For legal measurements of NO2 a WLTP-DTP subgroup (Worldwide Light Duty Test Procedures - Diesel Test Procedures) proposed different combinations of NOx-analyzers and analysis of NO and NOx. Some of these set-ups were tested in this work.
Technical Paper

VERTdePN Quality Test Procedures of DPF+SCR Systems

2014-04-01
2014-01-1579
The combined exhaust gas aftertreatment systems (DPF+SCR) are the most efficient way and the best available technology (BAT) to radically reduce the critical Diesel emission components particles (PM&NP) and nitric oxides (NOx). SCR (selective catalytic reduction) is regarded as the most efficient deNOx-system, diesel particle filters are most efficient for soot abatement. Today, several suppliers offer combined systems for retrofitting of HD vehicles. Quality standards for those quite complex systems and especially for retrofit systems are needed to enable decisions of several authorities and to estimate the potentials of improvements of the air quality in highly populated agglomerations. The present paper informs about the VERTdePN *) quality test procedures, which were developed in an international network project with the same name 2007-2011 (VERT … Verification of Emission Reduction Technologies; dePN … decontamination, disposal of PM / NP and of NOx).
X