Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

RVP Reduction for Control of Wintertime CO

1998-05-04
981373
A vehicle emissions test program was conducted to evaluate the impact of gasoline RVP reduction on CO emissions under conditions that are typical of CO exceedance days in Las Vegas and Los Angeles. Test results showed that CO emissions were reduced in the Las Vegas fleet when RVP was changed from 12 to 9 psi. In the Los Angeles fleet, the results were less consistent, perhaps due to the poorer integrity of evaporative emissions control systems on these vehicles. This suggests that an optimum emissions control strategy might include both RVP reduction and an effective vehicle inspection and maintenance (I&M) program.
Technical Paper

The Effects of Methanol/Gasoline Blends on Automobile Emissions

1992-02-01
920327
This report presents the Auto/Oil AQIRP results of a methanol fueled vehicle emission study. Nineteen early prototype flexible/variable fueled vehicles (FFV/VFV) were emission tested with industry average gasoline (M0), an 85% methanol-gasoline blend (M85), and a splash-blend of M85 with M0 (gasoline) giving 10% methanol (M10). Vehicle emissions were analyzed for the FTP exhaust emissions, SHED diurnal and hot soak evaporative emissions, and running loss evaporative emissions. Measurements were made for HC, CO and NOx emissions and up to 151 organic emission species, including air toxic components. M0 and M10 emissions were very similar except for elevated M10 evaporative emissions resulting from the high M10 fuel vapor pressure. M85 showed lower exhaust emissions than M0 for NMHC (non-methane hydrocarbon), OMHCE (organic material hydrocarbon equivalent), CO and most species. M85 had higher exhaust emissions for NMOG (non-methane organic gases), NOx, methanol and formaldehyde.
Technical Paper

Effects of Oxygenated Fuels and RVP on Automotive Emissions - Auto/Oil Air Quality Improvement Program

1992-02-01
920326
Exhaust and evaporative emissions were measured as a function of gasoline composition and fuel vapor pressure in a fleet of 20 1989 vehicles. Eleven fuels were evaluated; four hydrocarbon only, four splash blended ethanol fuels (10 vol %), two methyl tertiary-butyl ether (MTBE) blends (15 vol %) and one ethyl tertiary-butyl ether (ETBE) blend (17 vol %). Reid vapor pressures were between 7.8 and 9.6 psi. Exhaust emission results indicated that a reduction in fuel Reid vapor pressure of one psi reduced exhaust HC and CO. Adding oxygenates reduced exhaust HC and CO but increased NOx. Results of evaporative emissions tests on nineteen vehicles indicated a reduction in diurnal emissions with reduced Reid vapor pressure in the non-oxygenated and ethanol blended fuels. However, no reduction in diurnal emissions with the MTBE fuel due to Reid vapor pressure reduction was observed. Reducing Reid vapor pressure had no statistically significant effect on hot soak emissions.
Technical Paper

Effects of RVP Reduction on Vehicle CO Emissions During Las Vegas and Los Angeles Winter Conditions - Petroleum Environmental Research Forum Project Number 95-06

1997-05-01
971726
Two fleets of thirty vehicles each were emissions tested in order to determine the effect of gasoline RVP reduction on tailpipe carbon monoxide (CO) emissions in Las Vegas and Los Angeles under conditions typical of winter CO exceedances in these two cities. The hypothesized emission reduction was confirmed for Las Vegas. However, for Los Angeles, the effect of RVP was questionable. The reason or reasons for this discrepancy between the two cities could not be completely resolved from this study. Detrimental emissions effects of reduced RVP under cold temperatures were found to be small and inconsequential.
X