Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Emissions with Reformulated Gasoline and Methanol Blends in 1992 and 1993 Model Year Vehicles

1994-10-01
941969
Exhaust and hot soak evaporative emissions were measured in a fleet of 1993 production flexible/variable-fueled vehicles on methanol fuels blended with a reformulated gasoline. A fleet of 1993 California Tier 1 gasoline vehicles was also tested on the same reformulated gasoline blended to meet the specifications of California Phase 2 fuel. Ozone-forming reactivity, expressed as reactivity weighted emissions and specific reactivity, was calculated using 1991 SAPRC and 1994 CBM MIR and MOR factors. Within the FFV/VFV fleet, FTP exhaust and reactivity weighted emissions were significantly lower by 18 to 32% with Phase 2 gasoline relative to Industry Average gasoline. With the exception of greater NMOG emissions with the M85 blends, and lower OMHCE emissions with M85 blended with Industry Average gasoline, exhaust organic emissions, CO and NOx with the methanol fuels were not significantly different than their base gasolines.
Technical Paper

Effects of Gasoline Properties (T50, T90, and Sulfur) on Exhaust Hydrocarbon Emissions of Current and Future Vehicles: Modal Analysis - The Auto/Oil Air Quality Improvement Research Program

1995-10-01
952504
Modal analyses have been performed on engine-out and tailpipe hydrocarbon mass emissions to help understand why fuels with higher T50 and/or T90 distillation temperatures produce somewhat higher engine-out hydrocarbon emissions and substantially higher tailpipe hydrocarbon emissions. Modal analyses were also performed to examine how increased fuel sulfur increases tailpipe hydrocarbon emissions and to identify which gasoline properties in this study are responsible for the lower tailpipe hydrocarbon emissions with reformulated gasolines. These analyses were performed on three different test vehicle fleets representing varying levels of emissions control technology. The modal analyses showed that the substantially higher tailpipe hydrocarbon emissions from fuels with high T50 and/or T90 distillation temperatures result primarily from these fuels producing substantially higher engine-out hydrocarbon emissions during the first cycle of the Federal Test Procedure (FTP).
Technical Paper

Gasoline Reformulation and Vehicle Technology Effects on Emissions - Auto/Oil Air Quality Improvement Research Program

1995-10-01
952509
Engine-out and tailpipe exhaust, and hot soak evaporative emissions of two reformulated test gasolines and an Industry Average reference gasoline were compared in four vehicle fleets designed for progressively lower emission standards. The two reformulated gasolines included: 1) a gasoline meeting 1996 California Phase 2 regulatory requirements, and 2) a gasoline blended to the same specifications but without an oxygenated component. These two gasolines were compared with the Auto-Oil Air Quality Improvement Research Program's (AQIRP) Industry Average gasoline representing 1988 national average composition. The vehicle fleets were the AQIRP Older (1983 to 85MY) and Current (1989MY) vehicle fleets used in prior studies, and two new AQIRP test fleets, one designed to 1994 Federal Tier 1 standards and a prototype Advanced Technology fleet designed for lower emission levels of 1995 and later.
Technical Paper

Comparison of CNG and Gasoline Vehicle Exhaust Emissions: Mass and Composition - The Auto/Oil Air Quality Improvement Research Program

1995-10-01
952507
Exhaust emissions of three vehicles fueled with compressed natural gas (CNG) were compared with emissions of three counterpart gasoline vehicles. The natural gas vehicles were tested on four CNG fuels covering a wide range of pipeline natural gas compositions. The gasoline vehicles were tested on AQIRP Industry Average gasoline and a reformulated gasoline meeting California 1996 regulatory requirements. Nonmethane hydrocarbon (NMHC) and toxic air pollutant emissions of the CNG vehicles were about one-tenth those of their counterpart gasoline vehicles, while methane emissions were about ten times those of the gasoline vehicles. Carbon monoxide (CO) and nitrogen oxides (NOx) emissions were more variable among the three vehicle pairs. CO emissions ranged from 20 to 80% lower with CNG than with gasoline, and NOx ranged from 80% lower with CNG to equivalent to gasoline.
Technical Paper

Emissions with E85 and Gasolines in Flexible/Variable Fuel Vehicles - The Auto/Oil Air Quality Improvement Research Program

1995-10-01
952508
Exhaust and evaporative emissions from three flexible/variable fuel vehicles (FFV/VFV) were measured as the vehicles operated on E85 fuel (a mixture of 85% ethanol and 15% gasoline) or on gasoline. One vehicle was a production vehicle designed for ethanol fuels and sold in 1992-93 and the other two vehicles were prototypes which were recalibrated 1992 model year methanol FFV's. The gasolines tested were Industry Average Fuel A and a reformulated gasoline Fuel C2 that met California 1996 regulatory requirements. The gasoline component of Fuel E85 was based on the reformulated gasoline. The major findings from this three-vehicle program were that E85 reduced NOx 49% compared to Fuel A and 37% compared to Fuel C2, but increased total toxics 108% (5 mg/mi) and 255% (20 mg/mi), respectively, primarily by increasing acetaldehyde. The NOx effect was significant for both engine-out and tailpipe emissions.
X