Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Rollover Dynamics: An Exploration of the Fundamentals

2008-04-14
2008-01-0172
Research focusing on automotive rollovers has garnered a great deal of attention in recent years. Substantial effort has been directed toward the evaluation of rollover resistance. Issues related to crashworthiness, such as roof strength and restraint performance, have also received a great deal of attention. Much less research effort has been directed toward a more detailed study of the rollover dynamics from point-of-trip to point-of-rest. The reconstruction of rollover crashes often requires a thorough examination of the events taking place between point-of-trip and point-of-rest. Increasing demands are placed on reconstructionists to provide greater levels of detail regarding the roll sequence. Examples include, but are not limited to, roll rates at the quarter-roll level, CG trajectory (horizontal and vertical), roll angle at impact, and ground contact velocity. Often the detail that can be provided in a rollover reconstruction is limited by a lack of physical evidence.
Technical Paper

Tolerance of the Cervical Spine to Eccentric Axial Compression

2002-11-11
2002-22-0022
Cervical spine injury resulting from compressive impact loading is a particularly devastating musculoskeletal injury due to the frequency of neurologic involvement. The objective of this research was to investigate the effect of axial eccentricity on the tolerance of the cervical spine. Two functional spinal unit segments (3 adjacent vertebra and their intervening discs and soft-tissues) were dissected from the lower cervical spine of twenty-four human cadaver cervical spines and randomly assigned to one of three loading groups. The eight specimens were tested to failure in compression, compression-flexion, and compression-extension under displacement control on a high-rate MTS load frame. The resulting six-axis loads were measured and evaluated by injury mechanism (group).
X