Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Rollover Dynamics: An Exploration of the Fundamentals

2008-04-14
2008-01-0172
Research focusing on automotive rollovers has garnered a great deal of attention in recent years. Substantial effort has been directed toward the evaluation of rollover resistance. Issues related to crashworthiness, such as roof strength and restraint performance, have also received a great deal of attention. Much less research effort has been directed toward a more detailed study of the rollover dynamics from point-of-trip to point-of-rest. The reconstruction of rollover crashes often requires a thorough examination of the events taking place between point-of-trip and point-of-rest. Increasing demands are placed on reconstructionists to provide greater levels of detail regarding the roll sequence. Examples include, but are not limited to, roll rates at the quarter-roll level, CG trajectory (horizontal and vertical), roll angle at impact, and ground contact velocity. Often the detail that can be provided in a rollover reconstruction is limited by a lack of physical evidence.
Technical Paper

Tolerance of the Cervical Spine to Eccentric Axial Compression

2002-11-11
2002-22-0022
Cervical spine injury resulting from compressive impact loading is a particularly devastating musculoskeletal injury due to the frequency of neurologic involvement. The objective of this research was to investigate the effect of axial eccentricity on the tolerance of the cervical spine. Two functional spinal unit segments (3 adjacent vertebra and their intervening discs and soft-tissues) were dissected from the lower cervical spine of twenty-four human cadaver cervical spines and randomly assigned to one of three loading groups. The eight specimens were tested to failure in compression, compression-flexion, and compression-extension under displacement control on a high-rate MTS load frame. The resulting six-axis loads were measured and evaluated by injury mechanism (group).
Technical Paper

Simulating Moving Motorcycle to Moving Car Crashes

2012-04-16
2012-01-0621
There has been little published research into simulating two-moving motorcycle-to-car collisions for the purpose of accident reconstruction. In this paper a series of two-moving crash tests were conducted to study collisions of this type. These tests used a range of speeds for the cars and the motorcycles involved, with perpendicular and oblique intersection collision impact configurations. The tests were then simulated with two popular crash simulation packages which were not designed to simulate motorcycles. The purpose of this study was to evaluate existing techniques and develop new techniques for simulating motorcycles in these software packages and then to examine the ability of each package to simulate a two-moving motorcycle-to-car crash. The results demonstrate that it is indeed possible to simulate a motorcycle in these packages and that both packages can simulate two-moving motorcycle-to-car crashes reasonably well.
X