Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Sources of Variability in Structural Bending Response of Pediatric and Adult Human Ribs in Dynamic Frontal Impacts

2018-11-12
2018-22-0004
Despite safety advances, thoracic injuries in motor vehicle crashes remain a significant source of morbidity and mortality, and rib fractures are the most prevalent of thoracic injuries. The objective of this study was to explore sources of variation in rib structural properties in order to identify sources of differential risk of rib fracture between vehicle occupants. A hierarchical model was employed to quantify the effects of demographic differences and rib geometry on structural properties including stiffness, force, displacement, and energy at failure and yield. Three-hundred forty-seven mid-level ribs from 182 individual anatomical donors were dynamically (~2 m/s) tested to failure in a simplified bending scenario mimicking a frontal thoracic impact. Individuals ranged in age from 4 - 108 years (mean 53 ± 23 years) and included 59 females and 123 males of diverse body sizes.
Technical Paper

A Novel Approach to Scaling Age-, Sex-, and Body Size-Dependent Thoracic Responses using Structural Properties of Human Ribs

2020-03-31
2019-22-0013
Thoracic injuries are frequently observed in motor vehicle crashes, and rib fractures are the most common of those injuries. Thoracic response targets have previously been developed from data obtained from post-mortem human subject (PMHS) tests in frontal loading conditions, most commonly of mid-size males. Traditional scaling methods are employed to identify differences in thoracic response for various demographic groups, but it is often unknown if these applications are appropriate, especially considering the limited number of tested PMHS from which those scaling factors originate. Therefore, the objective of this study was to establish a new scaling approach for generating age-, sex-, and body size-dependent thoracic responses utilizing structural properties of human ribs from direct testing of various demographics.
X