Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Integrated Exhaust Manifold Cylinder Head Design Methodology for RDE in Gasoline Engine Application

2020-04-14
2020-01-0169
In recent years, worldwide automotive manufacturers have been continuously working in the research of suitable technical solutions to meet upcoming stringent Real Driving Emission (RDE) and Corporate Average Fuel Economy (CAFÉ) targets, as set by international regulatory authorities. Many technologies have been already developed, or are currently under study by automotive manufacturer for gasoline engines, to meet legislated targets. In-line with the above objective, there are many technologies available in the market to expand lambda 1 (λ=1) region by reducing fuel enrichment at high load-high revolutions per minute (RPM) by reducing exhaust gas temperature (for catalyst protection) for RDE regulation [1]. Integrated Exhaust Manifold (IEM) is the key technology for the Internal Combustion (IC) for the subjected matter as catalyst durability protection is done by reducing exhaust gas temperatures instead of injecting excess fuel for cooling catalyst.
Technical Paper

Valve Opening and Closing Event Finalization for Cost Effective Valve Train of Gasoline Engine

2019-04-02
2019-01-1191
With more stringent emission norm coming in future, add more pressure on IC engine to improve fuel efficiency for survival in next few decades. In gasoline SI (spark ignition) engine, valve events have major influence on fuel economy, performance and exhaust emissions. Optimization of valve event demands for extensive simulation and testing to achieve balance between conflicting requirement of low end torque, maximum power output, part load fuel consumption and emission performance. Balance between these requirements will become more critical when designing low cost valve train without VVT (Variable valve timing) to reduce overall cost of engine. Higher CR (Compression ratio) is an important low cost measure to achieve higher thermal efficiency but creates issue of knocking thereby limiting low speed high load performance. The effective CR reduction by means of late intake valve closing (LIVC) is one way to achieve higher expansion ratio while keeping high geometric CR.
X