Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Evaluation of Durable Emission Controls for Large Nonroad SI Engines

2002-05-06
2002-01-1752
The Environmental Protection Agency (EPA) is developing emission standards for nonroad spark-ignition engines rated over 19 kW. Existing emission standards adopted by the California Air Resources Board for these engines were derived from emission testing with new engines, with an approximate adjustment applied to take deterioration into account. This paper describes subsequent testing with two LPG-fueled engines that had accumulated several thousand hours of operation with closed-loop control and three-way catalysts. These engines were removed from forklift trucks for characterization and optimization of emission levels. Emissions were measured over a wide range of steady-state points and several transient duty cycles. Optimized emission levels from the aged systems were generally below 1.5 g/hp-hr THC+NOx and 10 g/hp-hr CO.
Technical Paper

Development of a Transient Duty Cycle for Large Nonroad SI Engines

2002-05-06
2002-01-1716
The Environmental Protection Agency (EPA) has proposed emission standards for nonroad spark-ignition engines rated over 19 kW. Existing emission standards adopted by the California Air Resources Board require testing on a steady-state duty cycle. This paper presents the results of measurements to characterize normal operation from forklift trucks, which are the dominant application for these engines. In combination with previous measurements with a welder to represent constant-speed applications, the measured data were used to derive a composite 20-minute transient duty cycle for emission testing for all nonroad industrial spark-ignition engines.
Technical Paper

The Society of Automotive Engineers Clean Snowmobile Challenge 2001 - Summary and Results

2001-09-24
2001-01-3652
In response to increasing concern about snowmobile noise and air pollution, Teton County Wyoming Commissioner Bill Paddleford and environmental engineer Dr. Lori Fussell worked with The Society of Automotive Engineers (SAE) and the Institute of Science, Ecology, and the Environment (ISEE) to organize an intercollegiate design competition, the SAE Clean Snowmobile Challenge (SAE CSC). The goal of the SAE CSC was to encourage development of a snowmobile with improved emission and noise characteristics that does not sacrifice performance. Modifications were expected to be cost effective and practical. The second year of the competition, the SAE CSC2001, was held in Jackson Hole, Wyoming from March 24 - 30, 2001.
Technical Paper

LOW-EMISSION SNOWMOBILES - THE 2001 SAE CLEAN SNOWMOBILE CHALLENGE

2001-12-01
2001-01-1832
The first Clean Snowmobile Challenge (CSC) was held in Jackson Hole, Wyoming in late March of 2000.(1)* It drew public attention to environmental issues associated with recreational products such as snowmobiles, and encouraged development of novel solutions through this SAE-sponsored student competition. While much good information was obtained, one area needing improvement was emissions measurement. In 2000, snowmobile emissions were measured using a drive-by infrared-type device. While this provided a rough indication of emission levels, more accurate data was desired to better reflect progress in reducing emissions. For this year's competition, Southwest Research Institute (SwRI) assembled the equipment necessary to provide brake-specific emissions measurement on-site. A truck-mounted mobile unit was outfitted with laboratory-grade instrumentation for measurement of HC, CO, NOx, CO2, and O2. A snowmobile chassis dynamometer was used to load the engines.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

Marine Outboard and Personal Watercraft Engine Gaseous Emissions, and Particulate Emission Test Procedure Development

2004-09-27
2004-32-0093
The U.S. EPA and the California Air Resources Board have adopted standards to reduce emissions from recreational marine vessels. Existing regulations focus on reducing hydrocarbons. There are no regulations on particulate emissions; particulate is expected to be reduced as a side benefit of hydrocarbon control. The goal of this study was to develop a sampling methodology to measure particulate emissions from marine outboard and personal watercraft engines. Eight marine engines of various engine technologies and power output were tested. Emissions measured in this program included hydrocarbons, carbon monoxide, oxides of nitrogen. Particulate emissions will be presented in a follow-up paper.
X