Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Identification of Unknown Contaminants in ISS Water Samples Employing Liquid Chromatography/Mass Spectrometry/Mass Spectrometry

2008-06-29
2008-01-2198
Liquid Chromatography / Mass Spectrometry / Mass Spectrometry (LC/MS/MS) is a powerful technique for identifying unknown non-volatile organic compounds dissolved in liquids. One type of LC/MS/MS that is gaining popularity is quadrupole-time-of-flight (QqTOF) mass spectrometry. This technique is now in use at the Johnson Space Center for identification of unknown nonvolatile organics in water samples from the space program. An example of the successful identification of an unknown peak in U.S. Lab Condensate is reviewed in detail in this paper. Each step of the procedure is described in the identification of triethylene glycol mono-n-butyl ether (TGBE) as the unknown analyte. The advantages of time-of-flight instrumentation are demonstrated through this example as well as the strategy employed in using time-of-flight data to identify unknowns. The use of the instrument for quantitative analysis is also demonstrated.
Technical Paper

Identification of an Organic Impurity Leaching from a Prototype ISS Water Container

2001-07-09
2001-01-2125
Collapsible bladder tanks called Contingency Water Containers (CWCs) have been used to transfer water from the Shuttle to the Mir and the International Space Station (ISS). Because their use as potable water storage on the ISS is planned for years, efforts are underway to improve the containers, including the evaluation of new materials. Combitherm®, a multi-layer plastic film, is a material under evaluation for use as the CWC bag material. It consists of layers of linear low density polyethylene, ethylene-vinyl alcohol copolymer, nylon, and a solvent- free adhesive layer. Long term studies of the quality of water stored in Combitherm bladders indicate a gradual but steady increase in the total organic carbon value. This suggests a leaching or breakdown of an organic component of the Combitherm.
Technical Paper

Solid Phase Extraction of Polar Compounds in Water

1997-07-01
972465
The Water and Food Analytical Laboratory, at the Johnson Space Center is developing an alternative to EPA Method 625 for analyzing semivolatile organic compounds in water. The current EPA method uses liquid-liquid extraction. The alternative method being developed differs in the sample preparation phase by replacing gravity-dependent liquid-liquid extraction with solid phase extraction (SPE). The ultimate goal is to incorporate the optimum SPE conditions into an automated sample preparation process. The method shows promise with regard to anticipated polar compounds. Fourteen SPE resins and nine elution solvents were compared. For typical analytes encountered by our laboratory, a styrene-divinylbenzene SPE resin and an elution solvent mixture of methylene chloride and ethyl ether were found to give the highest extraction recoveries. A study is in progress to remove water from the extracts before GC/MS analysis.
Technical Paper

Iodine Addition Using Triiodide Solutions

1992-07-01
921315
The STS water system is treated with iodinated water in order to prevent microbial contamination. This water is prepared by adding a concentrated solution of iodine to Ground Service Equipment (GSE) before adding the water in that unit to the spacecraft system. The solution is prepared by dissolving iodine in ethanol to make a tincture stock solution. While this procedure is rapid, the ethanol increases the carbon levels in the STS potable water and may produce unpleasant odors. The resulting high carbon levels preclude the use of total organic carbon measurements as a water quality monitoring tool. The use of triiodide solutions was studied as a substitute for using ethanol solutions. Two dissolution agents, sodium iodide and hydriodic acid, were investigated. Sodium iodide was studied at molar concentration ratios ranging from 1:1 to 2.5:1 sodium iodide to molecular iodine.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Three Year Results

1992-07-01
921310
Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. Scanning electron microscopy indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm.
X