Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program

2017-03-28
2017-01-0723
This paper describes a novel design and verification process for analytical methods used in the development of advanced combustion strategies in internal combustion engines (ICE). The objective was to improve brake thermal efficiency (BTE) as part of the US Department of Energy SuperTruck program. The tools and methods herein discussed consider spray formation and injection schedule along with piston bowl design to optimize combustion efficiency, air utilization, heat transfer, emission, and BTE. The methodology uses a suite of tools to optimize engine performance, including 1D engine simulation, high-fidelity CFD, and lab-scale fluid mechanic experiments. First, a wide range of engine operating conditions are analyzed using 1-D engine simulations in GT Power to thoroughly define a baseline for the chosen advanced engine concept; secondly, an optimization and down-select step is completed where further improvements in engine geometries and spray configurations are considered.
Technical Paper

Failure Prediction of Composite Structures

1998-09-28
985570
A fracture mechanics based failure prediction strategy for load-carrying composite structures was proposed. This strategy relies on the knowledge of failure modes and local structural details to predict failure based on coupon level test data. The methodology presented here effectively predicted structural failure of a composite hat stringer based on fracture toughness test data. In addition, ply waviness was identified as a critical factor influencing the delamination failure load. The finite element modeling (FEM) technique was used to model the skin-flange region, which included ply waviness effect. The finite element analysis results were used to calculate total strain energy release rate and its Mode I and Mode II components. The finite element analysis predicted unstable delamination growth for positive waviness angles and stable delamination growth for negative waviness angles.
Technical Paper

A Research on the Body-in-White (BIW) Weight Reduction at the Conceptual Design Phase

2014-04-01
2014-01-0743
Vehicle weight reduction has become one of the essential research areas in the automotive industry. It is important to perform design optimization of Body-in-White (BIW) at the concept design phase so that to reduce the development cost and shorten the time-to-market in later stages. Finite Element (FE) models are commonly used for vehicle design. However, even with increasing speed of computers, the simulation of FE models is still too time-consuming due to the increased complexity of models. This calls for the development of a systematic and efficient approach that can effectively perform vehicle weight reduction, while satisfying the stringent safety regulations and constraints of development time and cost. In this paper, an efficient BIW weight reduction approach is proposed with consideration of complex safety and stiffness performances. A parametric BIW FE model is first constructed, followed by the building of surrogate models for the responses of interest.
Technical Paper

Research on Road Capacity in the Scenarios of Autonomous Vehicles in China

2020-12-30
2020-01-5223
With the rapid development of autonomous driving technologies, the proportion of autonomous vehicles (AVs) will increase and influence road capacity. In this study, the simulation of mixed traffic flow was studied using an improved cellular automata model. Safety inter-vehicle spacing, the length of vehicles and reaction time are introduced into the cellular automata model. We delete the acceleration, deceleration and randomization rule for ideal conditions. Numerical simulations are utilized to analyze road capacity with different proportions of AVs. Road capacity is about 2200 pcu/h/lane for pure manual vehicle (MV) traffic flow and about 3600 pcu/h/lane for pure AV traffic flow. The capacity increases by 19.2% when there are 50% AVs in the traffic flow. And the capacity increases by around 63.6% due to the pure AV traffic flow.
Journal Article

Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System

2019-04-02
2019-01-1259
One promising method for reducing fuel consumption and emissions, particularly in heavy duty trucks, is platooning. As the distance between vehicles decreases, the following vehicles will experience less aerodynamic drag on the front of the vehicle. However, reducing the velocity of the air contacting the front of the vehicle could have adverse effects on the temperature of the engine. To compensate for this effect, the energy consumption of the engine cooling system might increase, ultimately limiting the overall improvements obtained with platooning. Understanding the coupling between drag reduction and engine cooling load requirement is key for successfully implementing platooning strategies. Additionally, in a Connected and Automated Vehicle (CAV) environment, where information of the future engine load becomes available, the operation of the cooling system can be optimized in order to achieve the maximum fuel consumption reduction.
X